Impurity Knight Shift and Electric Field Gradients at Al Nuclei in Dilute Substitutional Al-Li Alloys

  • M. Manninen
  • R. Monnier
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 42)


After a brief summary of the necessary notions of nuclear magnetic resonance, we present results for the contact spindensities at a substitutional Li nucleus, and for the electric field gradient caused by the impurity at the first three nearest neighbour host nuclei in a dilute Al-Li alloy. The displaced charge-and spin-densities around the impurity are computed selfconsistently using the spin-density functional formalism and including the main effect of the discreteness of the lattice. The latter is seen to play an essential role in determining the phase of the Friedel oscillations (and therefore the electric field gradient) and the impurity Knight shift. Due to the presence of polarizable bound states, the conventional formula for the Knight shift \(K \sim < \left| {\psi _k^ \to } \right.{\left. {\left( 0 \right)} \right|^2}{ > _{FS}}\) is found to be inadequate.


Electric Field Gradient Hyperfine Field Knight Shift Jellium Model Pure Host 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    The following textbooks give a clear account of the theory of nuclear magnetic resonance: A. Abragam, The Principles of Nuclear Magnetism, Clarendon Press, Oxford (1961)Google Scholar
  2. 1a.
    Charles P. Slichter, Principles of Magnetic Resonance, Harper &Row, New York (1963)Google Scholar
  3. For a complete review of NMR studies in metals and alloys with an exhaustive list of references up to 1977 see: G.C. Carter, L.H.Bennett and D.J. Kahan, Metallic Shifts in NMR, Volume 20 of Progress in Materials Science, Pergamon, Oxford (1977)Google Scholar
  4. 2.
    L. Jjárgensen, R. Nevald, D. L1. Williams, J. Phys. F 1 ,972 (1971)ADSCrossRefGoogle Scholar
  5. 3.
    J.A.R. Stiles and D. Ll. Williams, J. Phys. F 4, 2297 (1974)ADSCrossRefGoogle Scholar
  6. 4.
    M. Minier and S. Ho Dung, J. Phys. F 7, 503 (1977)ADSCrossRefGoogle Scholar
  7. 5.
    W. Kohn and S.H. Vosko, Phys. Rev. 119, 912 (1960)ADSCrossRefGoogle Scholar
  8. 6.
    P.M. Holtham and P. Jena, J. Phys. F 5 ,1649 (1975)ADSCrossRefGoogle Scholar
  9. 7.
    U. von Barth and L. Hedin, J. Phys. C 5 ,1629 (1972)ADSCrossRefGoogle Scholar
  10. 8.
    A.K. Rajagopal and J. Callaway, Phys. Rev. B 7, 1912 (1973)ADSCrossRefGoogle Scholar
  11. 9.
    O. Gunnarsson and B.I. Lundqvist, Phys. Rev. B 13, 4274 (1976)ADSCrossRefGoogle Scholar
  12. 10.
    P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964)MathSciNetADSCrossRefGoogle Scholar
  13. 11.
    W. Kohn and L.J. Sham, Phys. Rev. 140, A1133 (1965)MathSciNetADSCrossRefGoogle Scholar
  14. 12.
    G.W. Bryant and G.D. Mahan, Phys. Rev. B 17, 1744 (1978)ADSCrossRefGoogle Scholar
  15. 13.
    N.W. Ashcroft and D.C. Langreth, Phys. Rev. 155, 682 (1967)ADSCrossRefGoogle Scholar
  16. 14.
    R. Monnier and J.P. Perdew, Phys. Rev. B 17, 2595 (1978)ADSCrossRefGoogle Scholar
  17. 15.
    N.W. Ashcroft, Phys. Lett. 23, 48 (1966)ADSCrossRefGoogle Scholar
  18. 16.
    M. Manninen, P. Hautojärvi and R. Nieminen, Solid State Comm. 23, 795 (1977)ADSCrossRefGoogle Scholar
  19. 17.
    P. Jena, K.S. Singwi and R. Nieminen, Phys. Rev. B 17, 301 (1978)ADSCrossRefGoogle Scholar
  20. 18.
    K.G. Petzinger and R. Munjal, Phys. Pvev. B 15, 1560 (1977),ADSGoogle Scholar
  21. 18a.
    R. Munjal and K.G. Petzinger, in Hyperfine Interactions 4 ,301 (1978)ADSCrossRefGoogle Scholar
  22. 19.
    R.M. Nieminen, J. Nucl. Mat. 69–70, 633 (1978), M. Manninen and R.M. Nieminen, J. Phys. F (to appear)ADSCrossRefGoogle Scholar
  23. 20.
    C.O. Almblach and U. von Barth, Phys. Rev. B 13, 3307 (1976)ADSCrossRefGoogle Scholar
  24. 21.
    P. Jena, S.G. Das und K.S. Singwi, Phys. Rev. Lett. 40, 264 (1978)ADSCrossRefGoogle Scholar
  25. 22.
    M. Manninen (unpublished)Google Scholar
  26. 23.
    W.B. Pearson, Handbook of Lattice Spacings and Structures of Metals and Alloys (Pergamon, New York, 1964) p. 346.Google Scholar

Copyright information

© Plenum Press, New York 1979

Authors and Affiliations

  • M. Manninen
    • 1
  • R. Monnier
    • 2
  1. 1.Res. Inst. for Theor. Phys.Univ. of HelsinkiHelsinki 17Finland
  2. 2.Laboratorium für FestkörperphysikEHT-ZHönggerbergSwitzerland

Personalised recommendations