On the Theory of Disordered Systems: CPA Calculation of (SN)x with Hydrogen Impurities and Hartree-Fock Theory of Surface States of Three-Dimensional Crystals

  • J. Ladik
  • M. Seel
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 42)


A procedure to solve the coherent potential approximation (CPA) equation for energy and k-dependent self-energies is described. As illustrative example calculations for the \( {\left( {SN} \right)_x} - {\left( {\begin{array}{*{20}{c}} {SN} \\ H \end{array}} \right)_x} \) two-component mixed polymer are presented. Spikes and dips in the density of states of the mixed system are found already for 3 mol. per cent hydrogen concentration.

The resolvent method developed previously for the ab initio self-consistent field linear-combination of atomic-orbitals (SCF LCAO) treatment of a cluster of impurities embedded in a one-dimensional periodic polymer is extended for the ab initio SCF LCAO computation of the surface and chemisorption states of a three-dimensional semi-infinite crystal. The way of solving the matrix equations which are derived is outlined.


Mixed System State Curve Coherent Potential Approximation Hydrogen Impurity Periodic Chain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Del Re, J. Ladik and G. Biczó, Phys. Rev. 155, 967 (1967).Google Scholar
  2. 2.
    For a review of this method see : A.J. Elliot, J.A. Krumhansl and P.L. Leath, Rev. Mod. Phys. 46, 465 (1974).ADSCrossRefGoogle Scholar
  3. F. Hartino in “Quantum Theory of Polymers”, J.-M. André, J. Delhalle and J. Ladik, Eds., D. Reidel Publ. Co., Dordrecht Boston, p. 169 (1978).Google Scholar
  4. 3.
    M. Seel, T.C. Collins, F. Martino, D.K. Rai and J. Ladik, Phys. Rev. B (submitted).Google Scholar
  5. 4.
    J. Ladik and M. Seel, Phys. Rev. B13, 5338 (1976).ADSGoogle Scholar
  6. 5.
    J. Ladik, Phys. Rev. B17, 1663 (1978).ADSGoogle Scholar
  7. 6.
    For a review see : H.P. Geserich and L. Pintschovius, Adv. Solid State Phys. 16, 65 (1976).CrossRefGoogle Scholar
  8. 7.
    H. Kamimura, A.J. Grant, F. Levy, A.D. Yoffe, C.D. Pitt, Solid State Commun. 17, 49 (1975)ADSCrossRefGoogle Scholar
  9. D.E. Parry, J.M. Thomas, J. Phys. C3, L45 (1975)Google Scholar
  10. A. Zunger, J. Chem. Phys. 63, 4854 (1975)ADSCrossRefGoogle Scholar
  11. S. Suhai, M. Kertész, J. Phys. C9, L347 (1976)ADSGoogle Scholar
  12. N.T. Rajan and L.M. Falicov, Phys. Rev. B12, 1240 (1975).ADSGoogle Scholar
  13. 8.
    C. Merkel and J. Ladik, Phys. Lett. 56A, 395 (1976)ADSGoogle Scholar
  14. M. Kertész, J. Koller, A. Ažman and S. Suhai, Phys. Lett. 55A, 107 (1975).ADSGoogle Scholar
  15. 9.
    W.E. Rudge and P.M. Grant, Phys. Rev. Lett. 35, 1799 (1975)ADSCrossRefGoogle Scholar
  16. W.Y. Ching, J.G. Harrison and C.C. Lin, Phys. Rev. B15, 5975 (1977)ADSGoogle Scholar
  17. I.P. Batra, S. Ciraci and W.E. Rudge, Phys. Rev. B15, 5858 (1977).ADSGoogle Scholar
  18. 10.
    S. Suhai and J. Ladik, Solid State Commun. 22, 227 (1977).ADSCrossRefGoogle Scholar
  19. 11.
    B.L. Gyorffy and J.S. Faulkner (personal communication).Google Scholar
  20. 12.
    W.D. Gill, W. Bludan, R.H. Geiss, P.M. Grant, R.L. Greene, J.J. Mayerle and G.B. Street, Phys. Rev. Lett. 38, 1305 (1977).ADSCrossRefGoogle Scholar
  21. 13.
    M. Seel, “Theoretische Untersuchungen zur Aperiodizitat und zum Korrelationsproblern in Polymeren und Molekülkristallen” (Theoretical Investigations of Aperiodicity and Correlation in Polymers and Molecular Crystals) Thesis, University Erlangen Nürnberg 1978.Google Scholar
  22. 14.
    See for instance : W.L. McCubbin in “Quantum Theory of Polymers” p. 185 (1978).Google Scholar
  23. 15.
    P. Soven, Phys. Rev. 156, 809 (1967)ADSCrossRefGoogle Scholar
  24. S. Kirkpatrick, B. Velický, H. Ehrenreich, Phys. Rev. B1, 3250 (1970).ADSGoogle Scholar
  25. 16.
    See for instance : J. Callaway “Quantum Theory of the Solid State”, Academic Press, New York-London, p. 517 (1974).Google Scholar
  26. 17.
    S. Suhai (unpublished results).Google Scholar
  27. 18.
    J. Delhalle, Bull. Soc. Chim. Belg. 84, 135 (1975).CrossRefGoogle Scholar
  28. 19.
    See for instance : G. Rickayzen, “Theory of Superconductivity” Interscience-Wiley, New York-London (1965).MATHGoogle Scholar
  29. 20.
    P.W. Anderson, Phys. Rev. 124, 41 (1961).MathSciNetADSCrossRefGoogle Scholar
  30. 21.
    T.B. Grimley, Proc. Phys. Soc. Lond. 90, 751 (1966); 92, 776 (1967)ADSCrossRefGoogle Scholar
  31. T.B. Grimley, Ber. Bunsen Ges. 75, 1003 (1971)Google Scholar
  32. H.J. Kelly, Surf. Sci. 43, 587 (1974).ADSCrossRefGoogle Scholar
  33. 22.
    A. van der Avoird, S.P. Liebmann, and J.M. Fassaert, Phys. Rev. B10, 1230 (1974).ADSGoogle Scholar
  34. 23.
    J. Koutecký, Progr. Surf. and Membr. Sci. 11, 1 (1976).Google Scholar
  35. 24.
    J. Ladik, in “Electronic Structure of Polymers and Molecular Crystals”, J.-M. Andre and J. Ladik, Eds., Plenum Press, New York, p. 23 (1975).Google Scholar

Copyright information

© Plenum Press, New York 1979

Authors and Affiliations

  • J. Ladik
    • 1
  • M. Seel
    • 1
  1. 1.Friedrich-Alexander-Universität Erlangen-NürnbergErlangenGermany

Personalised recommendations