Relation Between Electric Field-Induced Optical Rectification and Electro-Optic Kerr Effect in Macromolecular Solutions

  • Bolesława Kasprowicz-Kielich
  • Stanisław Kielich


The conditions for a relationship between the new effect of Electric Field-Induced Optical Rectification (EFIOR) and the Electro-Optical Kerr Effect (EOKE) are analyzed. Measurements of the two effects yield the same information only in the case of molecular substances, acted on by a static electric field of not excessive strength. We show that in solutions of macromolecules exhibiting considerable reorientation effects of permanent and induced electric dipoles, the above relation between the two methods does not hold since, under external conditions, optical saturation of macromolecular alignment takes place in EFIOR whereas it is electric saturation in EOKE. We prove however that the measurement of laser light — induced electric anisotropy leads to identical results as EFIOR in the molecular as well as macromolecular case.


Electric Dipole Static Electric Field Permanent Dipole Moment Molecular Substance Electric Anisotropy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Piekara A and Kielich S, J. Chem. Phys., 29, (1958) 1297. Kielich S and Piekara A, Acta Physica Polonica, 18, (1959) 439.CrossRefGoogle Scholar
  2. 2.
    Kielich S, Physica, 34, (1967) 586.CrossRefGoogle Scholar
  3. 3.
    Ward J F and Guha J K, Appl. Phys. Lett., 30 (1977) 276.CrossRefGoogle Scholar
  4. 4.
    Buchert J, Kasprowicz-Kielich B and Kielich S, Adv. Mol. Relax. Interaction Processes, 11 (1977) 115.CrossRefGoogle Scholar
  5. 5.
    O’Konski C T, Yoshioka K and Orttung W H, J. Phys. Chem., 63, (1959) 1558.Google Scholar
  6. 6.
    Kielich S, J. Colloid Interface Sci., 33, (1970) 142.CrossRefGoogle Scholar
  7. 7.
    Drobnik A, Piekara A and Kaczmarek F, Second Conference on Coherence and Quantum Optics, Rochester 1966, Abstract p. 156.Google Scholar
  8. 8.
    Kasprowicz-Kielich B and Kielich S, Adv. Mol. Relax. Proc., 7 (1975) 275.CrossRefGoogle Scholar
  9. 9.
    Alexiewicz W, Buchert J and Kielich S, Acta Phys. Polonica, A52, (1977) 445.Google Scholar
  10. 10.
    Kielich S, in “Dielectric and Related Molecular Processes”, Ed. M. Davies (Wright, London, 1972) Vol.1 p.192.CrossRefGoogle Scholar
  11. 11.
    Prost J and Lalanne J R, Phys. Rev. A8, (1973) 2090.Google Scholar
  12. 12.
    Wong G K L and Shen Y R, Phys. Rev. A10, (1974) 1277.Google Scholar
  13. 13.
    Coles H J and Jennings B R, Mol. Phys. 31, (1976) 571; 1225.Google Scholar
  14. 14.
    Jennings B R and Coles H J, Proc. Roy. Soc. London, A348, (1976) 525.CrossRefGoogle Scholar
  15. 15.
    Hanson E G, Shen Y R and Wong G K L, Phys. Rev. A14, (1976) 1281.Google Scholar
  16. 16.
    Lalanne J R, Martin B, Pouligny B and Kielich S, Optic Comm. 19, (1976) 440; Mol. Cryst., Liquid Cryst. 42, (1977) 153.CrossRefGoogle Scholar
  17. 17.
    Schadt M, J. Chem. Phys., 67 (1977) 210.CrossRefGoogle Scholar
  18. 18.
    Filippini J C and Poggi Y, Phys. Letters, 65A, (1978) 30.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1979

Authors and Affiliations

  • Bolesława Kasprowicz-Kielich
    • 1
  • Stanisław Kielich
    • 1
  1. 1.Nonlinear Optics Division, Institute of PhysicsA. Mickiewicz UniversityPoznańPoland

Personalised recommendations