Effect of CTAB on Colloidal Suspensions of Sepiolite — A Study by Light Scattering, Electric Birefringence, Laser Line Broadening and Electrophoretic Light Scattering

  • G. J. Brownsey
  • V. J. Morris
  • B. R. Jennings


A combination of laser line broadening and electro-optic techniques has been used to investigate the stability of suspensions of the rigid needle-shaped clay sepiolite. In distilled water, sepiolite is negatively charged. Addition of the surfactant CTAB was used to take the clay through its iso-electric point. The minimum stability of the suspension occur-red at the surfactant concentration at which (a) the anisotropy (△α) of the electrical polarisability (α), obtained from electric birefringence data, showed a minimum value, and (b) the electrophoretic mobility, obtained from laser line broadening in electric fields, was zero. The minimum in △α was attributed to the isolation of the bulk polarisation contribution from the otherwise predominant interfacial polarisation contribution.


Surfactant Concentration Cetyl Trimethyl Ammonium Bromide Ionic Medium Clay Concentration Translational Diffusion Coefficient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Shaw D J, “Electrophoresis”, Academic Press, London (1969).Google Scholar
  2. 2.
    Fredericq E and Houssier C, “Electric Dichroism and Electric Birefringence”, Oxford University Press, London (1973).Google Scholar
  3. 3.
    O’Konski C T and Haltner A J, J. Amer. Chem. Soc., 79, (1957) 5634.CrossRefGoogle Scholar
  4. 4.
    Stoylov S P, Advances Colloid Interface Sci., 3, (1971) 45.CrossRefGoogle Scholar
  5. 5.
    Stoylov S P, Petkanchin I and Sokerov S, Proc. IVth Intern. Congress on Surface Activity, Barcelona, Editiones Unidas, S.A., 2 (1968) 163.Google Scholar
  6. 6.
    Stoylov S P and Petkanchin I, Compt. Rend, de l’Academie Bulg. des Sci., 24, (1971) 487.Google Scholar
  7. 7.
    Stoylov S P and Petkanchin I, J. Coll. Int. Sci., 40, (1972) 159.CrossRefGoogle Scholar
  8. 8.
    Petkanchin I and Bruckner R, Colloid and Polymer Sci., 254, (1976) 596.CrossRefGoogle Scholar
  9. 9.
    Morris V J and Jennings B R, J. Coll. Interf. Sci., 66, (1978) 313.CrossRefGoogle Scholar
  10. 10.
    Ware B J and Flygare W, Chem. Phys. Letts., 12, (1971) 81.CrossRefGoogle Scholar
  11. 11.
    Brownsey G J and Jennings B R, J. Chem. Phys., 3, (1978) 926.CrossRefGoogle Scholar
  12. 12.
    Berne B J and Pecora R, “Dynamic Light Scattering”, John Wiley and Sons Inc., London, Chap. 8, (1976) 164.Google Scholar
  13. 13.
    Badoz J, J. Phys. Radium, 17, Suppl. 11, (1956) 143.Google Scholar
  14. 14.
    Morris V J, Foweraker A R and Jennings B R, Adv. Mol. Relax. Inter. Processes, 12, (1978) 65.CrossRefGoogle Scholar
  15. 15.
    Maxwell J C, “A Treatise on Electricity and Magnetism”, Oxford University Press, London (1892).Google Scholar
  16. 16.
    Peterlin A and Stuart H A, “Handbuch und Jahrbuch der Chemischen Physik”, 8, Section IB, (1943).Google Scholar
  17. 17.
    Jennings B R and Morris V J, J. Coli. Interf. Sci., 49, (1974) 89.CrossRefGoogle Scholar
  18. 18.
    Brownsey G J, Jennings B R and Morris V J, J. Coli. Interf. Sci., 63, (1978) 597.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1979

Authors and Affiliations

  • G. J. Brownsey
    • 1
  • V. J. Morris
    • 1
  • B. R. Jennings
    • 1
  1. 1.Electro-Optics Group, Physics DepartmentBrunel UniversityUxbridge, MiddlesexUK

Personalised recommendations