Advertisement

Flow Alignment of a Colloidal Solution which can Undergo a Transition from the Isotropic to the Nematic Phase (Liquid Crystal)

Abstract

The flow alignment and the resulting flow birefringence of a colloidal solution of nonspherical particles is studied theoretically. Point of departure is a Fokker-Planck equation (FPE) for the orientational distribution function where torques exerted by the gradient of the flow velocity field and by an internal (molecular) field are taken into account. It is due to this internal field that a transition into an ordered liquid crystal phase of nematic type can occur if the concentration of the molecules exceeds a certain critical value. From the FPE a nonlinear inhomogeneous relaxation equation for the alignment tensor is derived which can be applied to the isotropic and nematic phases. Thus a unified theory is obtained for the pre-transitional behaviour of the flow birefringence in the isotropic phase and for the flow alignment in the nematic phase as well as in the transition region between both phases.

Keywords

Liquid Crystal Colloidal Particle Colloidal Solution Nematic Phase Isotropic Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Maxwell J C, Proc. Roy. Soc. London, A 22, (1873) 46.Google Scholar
  2. 2.
    Peterlin A and Stuart H A, Hand- und Jahrbuch der Chem. Phys., eds. Eucken and Wolf, 8 I B, Leipzig (1943).Google Scholar
  3. 3.
    Champion J V and Meeten G H,, Trans. Faraday Soc., 64, (1968) 238.CrossRefGoogle Scholar
  4. 4.
    Hess S, Phys. Lett. 30A, (1969) 239; Springer Tracts in Mod. Phys., 54, (1970) 136; A. Naturforsch., 29a, (1974) 1121.Google Scholar
  5. 5.
    Baas F, Phys. Lett., 36A, (1971) 107; Baas F, Breunese J N, Knaap H F P and Beenakker J J M, Physica, 88A, (1971) 1.Google Scholar
  6. 6.
    de Gennes P G, Phys. Lett., 30A, (1969) 454.CrossRefGoogle Scholar
  7. 7.
    Martinoty P, Candau S and Debeauvais, Phys. Rev. Lett., 27, (1971) 1123.Google Scholar
  8. 8.
    de Gennes P G, The Physics of Liquid Crystals, Clarendon Press, Oxford (1974).Google Scholar
  9. 9.
    Stephen M J and Straley J P, Rev. Mod. Phys., 46, (1974) 617.CrossRefGoogle Scholar
  10. 10.
    Hess S, Z. Naturforsch., 30a, (1975) 728, 1224.Google Scholar
  11. 11.
    Hess S, Z. Naturforsch., 31a, (1976) 1507.Google Scholar
  12. 12.
    Hess S, Z. Naturforsch., 31a, (1976) 1034.Google Scholar
  13. 13.
    Maier W and Saupe A, Z. Naturforsch., 13a, (1958) 564; 14a, (1959) 882.Google Scholar
  14. 14.
    Hess S, Physica, 74, (1974) 277.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1979

Authors and Affiliations

  • S. Hess
    • 1
  1. 1.Institut für Theoretische PhysikUniversität Erlangen-NürnbergErlangenGermany

Personalised recommendations