Polarized Fluorescence in an Electric Field: Theoretical Calculation at Arbitrary Fields, Experimental Comparison with Other Electrooptical Effects, Saturation of the Induced Dipole Moment in Polyelectrolytes

  • S. Sokerov
  • G. Weill


The molecular properties accessible from electrooptic effects are stressed and polarized fluorescence in an electric field is then introduced in view of its specific properties. The need to calculate the fourth moment of the orientation function at high fields is emphasized for its use in the determination of the mechanism of orientation. The results of such a calculation for permanent and induced dipole orientation are given. They are applied in an experimental comparison with electric birefringence and dichroism on fragments of DNA labelled with intercalated Acridine Orange. The significance of an apparent permanent dipole orientation mechanism is discussed in terms of saturation of the induced dipole moment in polyelectrolytes.


Acridine Orange Orientation Function Polarize Fluorescence Orientation Factor Fourth Moment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Coles H and Weill G, Polymer, 18, (1977) 1235.CrossRefGoogle Scholar
  2. 2.
    Weill G and Sturm J, Biopolymer, 14, (1975) 2537.CrossRefGoogle Scholar
  3. 3.
    O’Konski C T, Yoshioka K and Orttung W H, J. Phys. Chem., 63, (1959) 1558.CrossRefGoogle Scholar
  4. 4.
    Sokerov S and Weill G, Biophys. Chem., in press.Google Scholar
  5. 5.
    Sokerov S and Weill G, Biophys. Chem., in press.Google Scholar
  6. 6.
    Ridler P J and Jennings B R, J. Phys. E., Sc. Instr., 10, (1977) 558.CrossRefGoogle Scholar
  7. 7.
    Hornick C and Weill G, Biopolymer, 10, (1971) 2029.CrossRefGoogle Scholar
  8. 8.
    Hornick C and Weill G, Biopolymer, 10, (1971) 2345.CrossRefGoogle Scholar
  9. 9.
    Fredericq E and Houssier C, Electric Dichroism and Electric Birefringence, Clarendon Press, Oxford (1973).Google Scholar
  10. 10.
    Ding D W, Rill R and Van Holde K E, Biopolymer, 11, (1972) 2109.CrossRefGoogle Scholar
  11. 11.
    Kikuchi K and Yoshioka K, J. Phys. Chem., 17, (1973) 2101.CrossRefGoogle Scholar
  12. 12.
    Kikuchi K and Yoshioka K, Biopolymer, 15, (1976) 583.CrossRefGoogle Scholar
  13. 13.
    Mandel M, Mol. Phys., 4, (1961) 489.CrossRefGoogle Scholar
  14. 14.
    Shirai M and O’Konski C T, unpublished results.Google Scholar
  15. 15.
    Schwarz G, Z. Physik. Chem., Neue Folge, 19, (1959) 286.CrossRefGoogle Scholar
  16. 16.
    Hogan M, Dattagupta N and Crothers D M, P.N.A.S., 75, (1978) 195.CrossRefGoogle Scholar
  17. 157.
    Oosawa F, Biopolymer, 9, (1970) 677.CrossRefGoogle Scholar
  18. 18.
    McTague J and Gibbs J H, J. Chem. Phys., 44, (1966) 4295.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1979

Authors and Affiliations

  • S. Sokerov
    • 1
  • G. Weill
    • 1
  1. 1.Centre de Recherches sur les MacromoléculesCNRSStrasbourgFrance

Personalised recommendations