Advertisement

Fiber Optics pp 355-367 | Cite as

Radiation-Induced Optical Absorption Spectra of Fiber Optic Waveguides in the 0.4–1.7 μ Region

  • E. J. Friebele
  • G. H. SigelJr.
  • M. E. Gingerich

Abstract

Spectral measurements of the permanent and transient radiation-induced optical absorption in state-of-the-art low loss step and graded index optical fiber waveguides have revealed radiation-induced increases in the OH overtone and combination bands which limit the transmission at long wavelengths. The induced damage in Ge-doped silica core fibers codoped with B has been observed to increase at wavelengths longer than 1.05 μ, and P has been identified as a dopant which suppresses the intense uv Ge-related transient absorption in Ge-doped silica fibers but results in greater permanent damage in the visible and near ir.

Keywords

Electron Spin Resonance Transient Absorption Core Fiber Dope Silica Overtone Band 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. D. Maurer, E. J. Schiel, S. Kronenberg, and R. A. Lux, Appl. Opt. 12, 2023 (1973).ADSCrossRefGoogle Scholar
  2. 2.
    G. H. Sigel, Jr. and B. D. Evans, Appl. Phys. Lett. 24, 410 (1974).Google Scholar
  3. 3.
    B. D. Evans and G. H Sigel, Jr., IEEE Trans. Nucl. Sci. NS-21, 113 (1974).Google Scholar
  4. 4.
    P. L. Mattern, L. M. Watkins, C. D. Skoog, J. R. Brandon, and E. H. Barsis, IEEE Trans. Nucl. Sci. NS-21, 81 (1974).Google Scholar
  5. 5.
    B. D. Evans and G. H. Sigel, Jr., IEEE Trans. Nucl. Sci. NS-22, 2462 (1975).Google Scholar
  6. 6.
    P. L. Mattern, L. M. Watkins, C. D. Skoog, and E. H. Barsis, IEEE Trans. Nucl. Sci. NS-22, 2468 (1975).Google Scholar
  7. 7.
    E. J. Friebele, G. H. Sigel, Jr., and R. E. Jaeger, Optical Fiber Transmission II (Optical Society of America, Washington, D.C., 1977), paper TuD9.Google Scholar
  8. 8.
    E. J. Friebele, R. E. Jaeger, G. H. Sigel, Jr., and M. E. Gingerich, Appl. Phys. Lett. 32, 95 (1978).ADSCrossRefGoogle Scholar
  9. 9.
    E. J. Friebele, G. H. Sigel, Jr., and M. E. Gingerich, Proc. Third European Conf. on Optical Fiber Transmission, Munich, 1977, p. 72.Google Scholar
  10. 10.
    E. J. Friebele, M. E. Gingerich and G. H. Sigel, Jr., Appl. Phys. Lett. 32, 621 (1978).Google Scholar
  11. 11.
    E. J. Friebele, G. H. Sigel, Jr., and M. E. Gingerich, IEEE Trans. Nucl. Sci. NS-25, 1261 (1978).Google Scholar
  12. 12.
    D. L. Griscom, G. H. Sigel, Jr., and R. J. Ginther, J. Appl. Phys. 47, 960 (1976).ADSCrossRefGoogle Scholar
  13. 13.
    M. Stapelbroek, D. L. Griscom, E. J. Friebele and G. H. Sigel, Jr., J. Non-Cryst. Solids (in press).Google Scholar
  14. 14.
    A. Kats and J. M. Stevels, Philips Res. Rep. 11, 115 (1956).Google Scholar
  15. 15.
    J.W.H. Schreurs, J. Chem. Phys. 47, 818 (1967).ADSCrossRefGoogle Scholar
  16. 16.
    S. P. Faile and D. M. Roy, Mat. Res. Bull. 5, 385 (1970).CrossRefGoogle Scholar
  17. 17.
    L. L. Boyer, J. A. Harrington, M. Hass and H. B. Rosenstock, Phys. Rev. B11, 1665 (1975).ADSCrossRefGoogle Scholar
  18. 18.
    C. M..Hartwig, J. Chem. Phys. 66, 227 (1977).ADSGoogle Scholar
  19. 19.
    G.H.A.M. van der Steen, Philips Res. Repts. 30, 192 (1975).Google Scholar
  20. 20.
    K. Rau, private communication.Google Scholar
  21. 21.
    E. J. Friebele, P. C. Schultz, M. E. Gingerich and L. M. Hayden, Optical Fiber Transmission III ( Optical Society of America, Washington DC, 1979 ).Google Scholar

Copyright information

© Springer Science+Business Media New York 1979

Authors and Affiliations

  • E. J. Friebele
    • 1
  • G. H. SigelJr.
    • 1
  • M. E. Gingerich
    • 1
  1. 1.Naval Research LaboratoryUSA

Personalised recommendations