Fiber Optics pp 323-351 | Cite as

Solitons in the Theory of Guided Lightwaves

  • Bernard Bendow
  • Stanford P. Yukon


It is well-known that wavepackets launched in a nonlinear medium will, in general, become broadened and distorted as a result of the nonlinearity.1,2 Nevertheless, in certain circumstances it is possible to obtain stable propagating solutions to nonlinear equations (referred to as “solitons”). In general, analytic solutions of this type are known to exist only for a few selected equations with a single spatial degree of freedom. Solitons retain their identity in much the same way as the normal modes of a linear system; they even emerge unscathed after “colliding” with each other. The mathematical nature of the equations involved and their associated solitons is well-exemplified by the two cases of interest in the present paper, namely, the nonlinear Schroedinger and Korteweg de Vries equations. Their principal characteristics are summarized briefly in the Appendix.


Optical Waveguide Vries Equation Image Transmission Dark Soliton Intense Light Pulse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    See, for example, G. B. Whitham, “Linear and Nonlinear Waves” (John Wiley and Sons, N.Y., 1973) and references therein.Google Scholar
  2. 2.
    S. A. Akhamanov et al, in “Laser Handbook”, F. Arecchi and E. Schulz-Dubois, eds. ( North-Holland, Amsterdam, 1972 ).Google Scholar
  3. 3.
    See, for example, “Fundamentals of Optical Fiber Communications”, M. Barnoski, etc. (Academic, N.Y., 1975 ).Google Scholar
  4. 4.
    A. Yariv, J. Opt. Soc. Am. 66, 301 (1975);CrossRefGoogle Scholar
  5. A. Gover, C. P. Lee and A. Yariv, J. Opt. Soc. Am. 66, 306 (1975);ADSCrossRefGoogle Scholar
  6. A. Yariv, Appl. Phys. Lett. 28, 88 (1976).ADSCrossRefGoogle Scholar
  7. 5.
    S. P. Yukon and B. Bendow, Optics Lett. 2, 75 (1978).ADSCrossRefGoogle Scholar
  8. 6.
    N. Tzoar and J. I. Gersten, in “Optical Props. Highly Transparent Solids”, S. S. Mitra and B. Bendow, eds. ( Plenum, N.Y., 1975 ).Google Scholar
  9. 7.
    M. Jain and N. Tzoar, J. Appl. Phys., 1978 (in press); N. Tzoar and M. Jain, this volume.Google Scholar
  10. 8.
    A. Hasegawa and F. Tappert, Appl. Phys. Lett. 23, 142 (1973).ADSCrossRefGoogle Scholar
  11. A. Hasegawa and F. Tappert, Appl. Phys. Lett. 23, 171 (1973).ADSCrossRefGoogle Scholar
  12. 9.
    S. Kawakami and J. Nishizawa, IEEE Trans. on Microwave Theory MTT-16, 814 (1968).Google Scholar
  13. 10.
    N. Rosen and P. M. Morse, Phys. Rev. 42, 210 (1932).ADSCrossRefGoogle Scholar
  14. 11.
    M. S. Sodha and A. K. Ghatak, “Inhomogeneous Optical Waveguides” (Plenum Press, N.Y., 1977 ).Google Scholar
  15. 12.
    See, for example, L. D. Faddeyev, J. Math. Phys. 4, 72 (1963).CrossRefGoogle Scholar
  16. 13.
    I. Kay and H. E. Moses, J. Appl. Phys. 27, 1503 (1956).ADSMATHCrossRefGoogle Scholar
  17. 14.
    C. S. Gardner, J. M. Greene, M. D. Kruskal and R. M. Miura, Phys. Rev. Lett. 19, 1095 (1967).ADSMATHCrossRefGoogle Scholar
  18. 15.
    S. P. Yukon and B. Bendow, to be published.Google Scholar
  19. 16.
    P. D. Lax, Comm. Pure and Appl. Math. 21, 467 (1968).MathSciNetMATHGoogle Scholar
  20. 17.
    M. J. Ablowitz, D. J. Kaup, A. C. Newell, and H. Segur, Studies in Appl. Math. 53, 249 (1974).MathSciNetGoogle Scholar
  21. 18.
    V. E. Zakharov and A. B. Shabat, Soviet Physics JEPT 34, 62 (1972).MathSciNetADSGoogle Scholar
  22. 19.
    A. Hasegawa and F. Tappert, Appl. Phys. Lett. 23, 171 (1973).ADSCrossRefGoogle Scholar
  23. 20.
    V. E. Zakharov and A. B. Shabat, Soviet Physics JETP 37, 823 (1973).ADSGoogle Scholar
  24. 21.
    R. Hirota, Lexture Notes in Math. 515 ( Springer-Verlag, Berlin, 1976 ).Google Scholar

Copyright information

© Springer Science+Business Media New York 1979

Authors and Affiliations

  • Bernard Bendow
    • 1
  • Stanford P. Yukon
    • 2
  1. 1.Solid State Sciences DivisionRome Air Development CenterHanscom AFBUSA
  2. 2.Parke Mathematical LaboratoriesCarlisleUSA

Personalised recommendations