Fiber Optics pp 279-302 | Cite as

Propagating Fields in Graded Index Optical Fibers

  • M. D. Feit
  • J. A. FleckJr.


Solution of the wave equation for light propagation in an optical fiber yields detailed information on power losses, angular and spatial sizes of transmitted light and modal propagation constants.


Discrete Fourier Transform Power Fraction Path Segment Refractive Index Profile Leaky Mode 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    For a comprehensive survey of research in this field see, for example, Detlev Gloge, ed., “Optical Fiber Technology”, IEEE Press, New York.Google Scholar
  2. 2.
    See also J. A. Arnaud, “Beam and Fiber Optics”, Academic Press, New York (1976).CrossRefGoogle Scholar
  3. 3.
    Examples of modal theory can be found in D. Gloge and E.A.J. Marcatili, Bell Syst. Tech. J. 52, 1563 (1973)Google Scholar
  4. D. Gloge, IEEE Trans. Microwave Theory Tech. MIT-23, 106, 1975, D. Marcuse, “Theory of Dielectrical Optical Wave-guides”, Academic Press, New York (1974), Robert Olshansky and Donald B. Keck, Appl. Opt. 15, 483 (1976).Google Scholar
  5. 4.
    EVA Buffered Corguide Fibers Product Bulletin No. 2, Telecommunication Products Dept., Corning Glass Works, Corning, New York 14830 USA, May 1, 1976.Google Scholar
  6. 5.
    See for example, J. A. Fleck, Jr., J. R. Morris and M. D. Feit, Appl. Phys. 10, 129 (1976).Google Scholar
  7. 6.
    For a comprehensive review of the application of the Fresnel approximation to problems in nonlinear optics see for example, J. H. Marburger, Prog. Quant. Electr. 4, 35, Pergamon Press (1975).Google Scholar
  8. 7.
    This follows from the sampling theorem, see for example, E. Oran Brigham, “The Fast Fourier Transform”, Prentice Hall, Inc., Englewood Cliffs, New Jersey, 99 (1974).Google Scholar
  9. 8.
    See for example, P. K. Tien, J. P. Gordon and J. R. Whinnery, Proc. IEEE 53, 129 (1965).Google Scholar
  10. 9.
    It has been shown that beam abberation and an erratic focusing pattern are general consequences of propagation in a nonquadratic lenslike medium. M. D. Feit, J. A. Fleck, Jr. and J. R. Morris, J. Appl. Phys. 48, 3301 (1977).Google Scholar
  11. 10.
    Steward E. Miller, Enrique A. J. Marcatili, and Tingye Li, Proc. IEEE 61, 1703 (1973).CrossRefGoogle Scholar
  12. 11.
    E. Oran Brigham, ibid, 141.Google Scholar
  13. 12.
    John M. Blatt, Victor F. Weisskoff, Theoretical Nuclear Physics, John Wiley and Sons, New York, 64 (1952).Google Scholar

Copyright information

© Springer Science+Business Media New York 1979

Authors and Affiliations

  • M. D. Feit
    • 1
  • J. A. FleckJr.
  1. 1.Lawrence Livermore LaboratoryUniversity of CaliforniaLivermoreUSA

Personalised recommendations