Skip to main content

Effect of Zero Stress Aging on the Strength of Optical Fibers

  • Chapter
Book cover Fiber Optics
  • 348 Accesses

Abstract

The effect of moisture under zero stress on the subsequent fracture strength of optical fibers is of considerable importance because optical fibers in service are likely to encounter water and high humidity environments. The effects of zero-stress aging on the strength of a uvcured epoxy acrylate coated optical fiber were determined for different aging environments and temperatures. Aging at high humidities and up to 60°C causes a strength decrease which can be recovered on drying. The recoverability of the strength shows that the strength decrease is not due to flaw growth. The aging effect can be explained in terms of an enhancement of dynamic fatigue by the establishment of a higher humidity crack tip environment. It is speculated that the latter is caused by absorption of water molecules at the polymer-glass interface and the existing flaw surfaces. A much larger strength decrease that is not fully recoverable occurs upon aging above 60°C in high humidity. It is speculated that a further chemical change in the crack tip environment related to the coating chemistry (the thermal and hydrolytic stabilities) occurs at the higher aging temperatures. Although the decrease in strength caused by aging in high humidities up to 60°C is recoverable in laboratory drying experiments, it is a factor to contend with in service and should be considered in the design of optical cables.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. H. Otto, “The Effect of Moisture on the Strength of Glass Fibers - A Literature Review”, Whittaker Corporation, San Diego, California, Defense Documentation Center Report No. AD629370, 1965.

    Google Scholar 

  2. S. M. Wiederhorn, J. Non-Cryst-Solids, 19, 169 (1975).

    Article  ADS  Google Scholar 

  3. S. M. Wiederhorn, “Mechanisms of Subcritical Crack Growth in Glass” in Fracture Mechanics of Ceramics, Vol. 3, ed. R. C. Bradt et. al., ( Plenum, New York, 1978 ) pp. 549–580.

    Google Scholar 

  4. R. Adams and P. W. McMillan, J. Mater, Sci., 12, 643 (1977).

    Article  ADS  Google Scholar 

  5. D. Kalish, P. L. Key, C. R. Kurkjian, B. K. Tariyal and T. T. Wang, “Fiber Characterization-Mechanical”, Chapter 12 in Optical Fiber Communications, ed. by S. E. Miller and A. G. Chynoweth (Academic Press, New York), 1978 (in press).

    Google Scholar 

  6. R. E. Mould, J. Am. Cer. Soc., 43, 160 (1960).

    Article  Google Scholar 

  7. W. C. Levengood, J. Appl. Phys., 29, 820

    Google Scholar 

  8. A. J. Holland and W.E.S. Turner, J. Soc. Glass Technol., 21, 383 (1937).

    Google Scholar 

  9. M. Watanabe, R. V. Caporali and R. E. Mould, Phys. Chem. Glasses, 2, 12 (1961).

    Google Scholar 

  10. W. F. Thomas, Phys. Chem. Glasses, 1, 4 (1960).

    Google Scholar 

  11. B. A. Proctor, I. Whitney and J. W. Johnson, Proc. Roy. Soc. 297A, 534 (1967).

    Article  ADS  Google Scholar 

  12. B. K. Tariyal, Bell Laboratories, unpublished research, 1974.

    Google Scholar 

  13. T. T. Wang and H. M. Zupko, J. Mater. Sci. (1978 - in press).

    Google Scholar 

  14. J. T. Krause and C. R. Kurkjian, Topical Meeting on Optical Fiber Transmission II, O. S. A. Williamsburg, Virginia, Technical Digest, paper TuA3, February, 1977.

    Google Scholar 

  15. J. T. Krause, R. V. Albarino, F. V. DiMarcello, C. R. Kurkjian, H. Schonhorn and H. N. Vazirani, Bell Laboratories, Private Communication, 1976.

    Google Scholar 

  16. T. T. Wang, L. L. Blyler, Jr., A. C. Hart, Jr., and F. V. DiMarcello, Bell Laboratories, Private Communication, 1976.

    Google Scholar 

  17. A. Fox, E. O. Fuchs and P. L. Key, Topical Meeting on Optical Fiber Transmission II, O. S. A. Williamsburg, Virginia, Technical Digest, paper TuA4, February, 1977.

    Google Scholar 

  18. H. C. Chandan, Bell Laboratories, Private Communication, 1978.

    Google Scholar 

  19. A. J. Moulson and J. P. Roberts, Trans. Brit. Ceram. Soc., 59, 388 (1960).

    Google Scholar 

  20. A. J. Moulson and J. P. Roberts, Trans. Faraday Soc., 57, 1208 (1961).

    Article  Google Scholar 

  21. T. Drury and J. P. Roberts, Phys. Chem. Glasses, 4, 79 (1963).

    Google Scholar 

  22. G. J. Roberts and J. P. Roberts, Phys. Chem. Glasses, 5, 26 (1964).

    Google Scholar 

  23. R. S. McDonald, J. Phys. Chem., 62, 1168 (1958).

    Article  Google Scholar 

  24. F. R. Wight, Bell Laboratories, Private Communication, 1978.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1979 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tariyal, B.K., Kalish, D. (1979). Effect of Zero Stress Aging on the Strength of Optical Fibers. In: Bendow, B., Mitra, S.S. (eds) Fiber Optics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-3492-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-3492-7_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-3494-1

  • Online ISBN: 978-1-4684-3492-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics