Advertisement

Design and Synthesis of a Variable Filled Band Molecular Conductor

  • Joel S. Miller
  • Arthur J. Epstein
Part of the Nato Conference Series book series (NATOCS, volume 1)

Abstract

New pseudo one-dimensional (1-D) substances are required to understand the salient features associated with unidimensionali-ty. To date a variety of organic (e.g., tetrathiofulvalene (TTF), 7,7,8,8-tetracyano-p-quinodimethane (TCNQ)), inorganic (e.g., K2Pt(CN)4Br0.3·3H2O(KCP)), and covalent polymers (e.g., poly-(sulfurnitride)(SN)x) have been studied.1 However, due to significant differences in the types of bonding, resultant bandwidth, different stoichiometries (Tables I-II), and crystal structures detailed comparisons between these classes of materials are difficult to make. To help clarify the problem we focused our attention at approaching the situation from a different viewpoint, namely, studying the physical properties solely as a function of band filling, i.e., Fermi energy. In contrast with “classical” semiconductors, e.g., silicon, where doping with electron deficient, e.g., gallium, or electron rich, e.g., arsenic, atoms is easily accomplished to vary the Fermi energy, wide variation of the band filling of molecular based materials had not been previously reported.

Table I

Prototype 1-D Systems

Class of Substance (Conducting Chain)

Type of Bonding

Typical Bandwidth, eV

Organic (based on TCNQ)

pz orbitals (b2g-b2g)

1/3

Inorganic (based on TCP*)

dz2 orbitals (ag -ag)

covalent bonds (mixture of sp2/sp3/px/d)

4

Polymer ((SN)X)

1

Table II

Representative 1-D Materials

One-Dimensional Substancea

Ground Stateb

Typec

dσ/dTd

Stoichiometric

Degree of Band Filling

(SN)x

SC

P

+

Yes

semimetal

Qn(TCNQ)2

I

0

+

Yes

0.25

(NMP)x(Phen)1.x(TCNQ)

I

0

+

No

0.25-0.5f

(TTFMTCNQ)

I

0

+

Yes

0.309

(TTF)x(TSeF)1.xTCNQ

I

0

+

No

0.30-0.32

NH(CH3)3(I)(TCNg)

I

0,H

+

Yes

0.33

(HMSeF)(TCNQ)

HC

0

+

Yes

0.379

(NMP)(TCNQ)

I

0

+

?

0.33-0.50

(TTF)Br

I

0,H

-

Yes

0.50

(TTT)I2.7

I

0,H

+

Yes

0.55

(TTF)Br0.76

I

0,H

+

No

0.62

(TTF)(SeCN)058

I

0

+

No

0.71

(TTT)I1.6

HC

0,H

+

Yes

U.73

(TSeT)2Cl

HC

0,H

+

Yes

0.75

K1/2Ir(CO)2Cl2

I

I

?

No

0.75

Rb2Pt(CN)4(FHF)0.40

K1.6Pt(O2C2O2 ) 2 1.2H2O Hg3AsF6

Ni(Pc)I

-

-

SC

I

I

I

I,H

?

7

+

+

No

No

No

No

0.80

0.80

0.83

0.84

K2Pt(CN)4Br0.3.3H20

K1.75Pt(CN)4.1.5H2O

[C(NH2)3]2Pt(CN)4Br0.25.H2O

Ni(HDPG)2I

 

I

I

I

I,H

+ +

No

No

No

No

0.85

0.875

0.875

0.90

Cs2Pt(CN)4F0.19

Ni(HBQD)2I0.5

I

I I,H

?

No

No

0.91

0.92

[(SN)Brû.4]x

[(CH)I0.22]X

ML

ML

P,H(?) P,H(?)

+

+

No

No

0.93

0.96

Ir(CO)3Cl

-

I

?

?

0.96-1.00

Ni(HBQD)2I0.02

-

I

7

No

0.99

(CH)X

I

P

-

Yes

1.00

Keywords

Fermi Energy Anion Chain Valence Band Structure Cation Chain Isomorphous Series 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. S. Miller, Ann, N.Y. Acad. Sci., 313, 1 (1978) and references therein;CrossRefGoogle Scholar
  2. 1a.
    “Synthesis äna Properties of Low-Dimensional Materials,” J. S. Miller and A. J. Epstein, Eds., N.Y. Acad. Sci., 313 (1978); A. F. Garito and A. J. Heeger, Ace. Chem. Res., 7, 232 (1974);CrossRefGoogle Scholar
  3. 1b.
    M. Narita and C. U. Pittman, Synthesis, 8, “589 (1976);Google Scholar
  4. 1c.
    B. P. Bespalov and V. V. Titov, Russ. Chem. Rev., 44, 1091 (1975);CrossRefGoogle Scholar
  5. 1d.
    J. J. Andre, A. Bieber and F. Gaultier, Ann. Phys. (Paris), 1, 145 (1976);Google Scholar
  6. 1e.
    L. Pál, G. Grüner, A. Jáhossy, and J. Sólyom, Ed., Lect. Notes Phys., 65 (1977); H. J. Keller, Ed., Study Inst., Ser., Ser. B, 25 (T577); H. J. Keller, Ed., Study Inst. Ser., Ser. B, 7 (1975); J. S. Miller and A. J. Epstein, Prog. Inorg. Chem., 20, 1 (1976);CrossRefGoogle Scholar
  7. 1e.
    G. B. Street and R. L. Greene, IBM J. Res. Dev., 21, 99 (1977).CrossRefGoogle Scholar
  8. 2.
    J. S. Miller and A. J. Epstein, J. Am. Chem. Soc.100, 1639 (1978).CrossRefGoogle Scholar
  9. 3.
    J. S. Miller, Ann. N.Y. Acad. Sci., 313, 25 (1978).CrossRefGoogle Scholar
  10. 4.
    A. J. Epstein and J. S. Miller, Solid State Commun., 27, 325 (1978).CrossRefGoogle Scholar
  11. 5.
    A. J. Epstein, E. M. Conwell, and J. S. Miller, Ann. N.Y. Acad. Sci., 313, 183 (1978).CrossRefGoogle Scholar
  12. 6.
    (a) C. J. Fritchie, Jr., Acta Cryst., 20, 892 (1966);CrossRefGoogle Scholar
  13. 6.
    (b) B. Morosin, Phys. Lett. A, 53, 455 (1975);CrossRefGoogle Scholar
  14. 6.
    (c) H. Kobayashi, Bull. Chem. Soc. Jap., 48, 1373 (1975).CrossRefGoogle Scholar
  15. 7.
    A. J. Epstein, E. M. Conwell, D. J. Sandman, and J. S. Miller, Solid State Commun., 23, 355 (1977).CrossRefGoogle Scholar
  16. 8.
    M. A. Abkowitz, A. J. Epstein, C. H. Griffiths, J. S. Miller, and M. L. Slade, J. Am. Chem. Soc., 99, 5304 (1977).CrossRefGoogle Scholar
  17. 9.
    M. A. Abkowitz, J. W. Brill, P. M. Chaikin, A. J. Epstein, M. F. Froix, C. H. Griffiths, W. Gunning, A. J. Heeger, W. A. Little, J. S. Miller, M. Novatny, D. B. Tanner, and M. L. Slade, Ann. N.Y. Acad. Sci., 313, 459 (1978).CrossRefGoogle Scholar
  18. 10.
    D. B. Tanner, J. E. Deis, A. J. Epstein, and J. S. Miller, submitted for publication.Google Scholar

Copyright information

© Plenem Press New York 1979

Authors and Affiliations

  • Joel S. Miller
    • 1
  • Arthur J. Epstein
    • 2
  1. 1.Rockwell International Science CenterThousand OaksUSA
  2. 2.Xerox Webster Research CenterRochesterUSA

Personalised recommendations