Advertisement

The Structure and Magnetic and Electrical Conductivity Properties of the Charge Transfer Compound 1,1′-Dimethylferrocenium Bis-(Tetracyanoquinodimethane), [(CH3C5H4)2Fe][TCNQ]2

  • Scott R. Wilson
  • Peter J. Corvan
  • Reginald P. Seiders
  • Derek J. Hodgson
  • Maurice Brookhart
  • William E. Hatfield
  • Joel S. Miller
  • Arthur H. ReisJr.
  • P. K. Rogan
  • Elizabeth Gebert
  • Arthur J. Epstein
Part of the Nato Conference Series book series (NATOCS, volume 1)

Abstract

Metallocenes react with tetracyanoquinodimethane (TCNQ) to yield charge transfer compounds predominantly of the stoichiometry [metallocene][TCNQ] or [metallocene][TCNQ]2.1,2 The 1:2. compounds have relatively high electrical conductivities which range from 4 ohm-1cm-1 for [(C5H5)2Fe][TCNQ]2 to 0.03 ohm-1cm-1 for [(CH3C5H4)2Fe]-[TCNQ]2,1 but, up to now, difficulties in obtaining high quality single crystals have prevented structural determinations.

Keywords

Inversion Center Magnetic Susceptibility Data TCNQ Molecule Ammonium Hexafluorophosphate Charge Transfer Compound 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. R. Melby, R. J. Harder, W. R. Hertler, W. Mahler, R. E. Benson, and W. E. Mochel, J. Amer. Chem. Soc., 84, 3374 (1962).CrossRefGoogle Scholar
  2. 2.
    J. S. Miller, A. H. Reiss, Jr., and G. A. Candela, Lecture Notes in Physics, in press.Google Scholar
  3. 3.
    G. R. Desiraju, D. Y. Curtin, and I. C. Paul, J. Amer. Chem. Soc., 99, 6148 (1977).CrossRefGoogle Scholar
  4. 4.
    D. B. Losee and W. E. Hatfield, Phys. Rev. B, 10, 212 (1974).CrossRefGoogle Scholar
  5. 5.
    P. W. R. Corfield, R. J. Doedens, and J. A. Ibers, Inorg. Chem., 6, 197 (1967).CrossRefGoogle Scholar
  6. 6.
    S. A. Goldfield and K. N. Raymond, Inorg. Chem., 10, 2604 (1971).CrossRefGoogle Scholar
  7. 7.
    For a description of the programs used, see D. L. Lewis and D. J. Hodgson, Inorg. Chem., 13, 143 (1974).CrossRefGoogle Scholar
  8. 8.
    P. Main, M. M. Woolfson, and G. Germain, “MULTAN: A Computer Program for the Automatic Solution of Crystal Structures”, University of York, England.Google Scholar
  9. 9.
    “International Tables for X-ray Crystallography”, Vol. IV, Kynoch Press, Birmingham, England.Google Scholar
  10. 10.
    F. Herbstein, in “Perspectives in Structural Chemistry”, Vol. IV, J. D. Dunitz and J. A. Ibers, eds., pp. 166–395.Google Scholar
  11. 11.
    R. P. Shibaeva, L. O. Atovmyan, and V. I. Ponomarev, Zh. Str. Khim., 16, 860 (1975) and references therein.Google Scholar
  12. 12.
    E. M. Connell, A. J. Epstein, and M. J. Rice, Proc. Int. Conf. on Quasi-One-Dimensional Conductors, Dubrovnik, Yugoslavia, Sept. 4–8, 1978. (Springer-Verlay, to be published).Google Scholar
  13. 13.
    T. W. Cape and R. P. Van Dyne, private communication.Google Scholar
  14. 14.
    D. M. Duggan and D. N. Hendrickson, Inorg. Chem., 14, 955 (1975).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1979

Authors and Affiliations

  • Scott R. Wilson
  • Peter J. Corvan
  • Reginald P. Seiders
  • Derek J. Hodgson
    • 1
  • Maurice Brookhart
  • William E. Hatfield
    • 1
  • Joel S. Miller
    • 2
  • Arthur H. ReisJr.
  • P. K. Rogan
    • 3
  • Elizabeth Gebert
    • 3
  • Arthur J. Epstein
    • 4
  1. 1.Kenan Laboratory 045AUniversity of North CarolinaChapel HillUSA
  2. 2.Rockwell Science CenterThousand OaksUSA
  3. 3.Argonne National LaboratoryArgonneUSA
  4. 4.Xerox Webster Research CenterRochesterUSA

Personalised recommendations