Intercalation Compounds of Graphite

  • F. Lincoln Vogel
Part of the Nato Conference Series book series (NATOCS, volume 1)


Intercalation compounds of graphite are of interest, both scienfically and technologically because of unusual properties that derive mainly from high degree of crystal anisotropy. This structure, composed of atoms tightly bonded in loosely stacked planes, produces a two dimensionality that yields a high in-plane strength and elastic modulus, high electrical conductivity, selective catalytic and chemical reactions and other interesting phenomena. Since a wide range of variables can control these effects, the materials scientist is afforded an opportunity for the design of synthetic materials rather than relying upon the limited properties of natural materials. Thus in this conference on molecular metals the exposure of unconventional properties is to be expected. The science of materials that produces this design information lies at the juncture of chemistry and physics, employing the former for the intelligent synthesis of materials and the latter for rationalization of properties. This paper will present intercalation compounds of graphite from the point of view of a quest for a synthetic material of high electrical conductivity.


Intercalation Compound Graphite Crystal Alkali Metal Atom Graphite Intercalation Compound Intercalate Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G.R. Henriig. Prog. Inorg. Chem. 1, 125 (1959).CrossRefGoogle Scholar
  2. 1a.
    W. Rüdorff, Adv. Inorg. Chem. 1, 223 (1959).CrossRefGoogle Scholar
  3. 2.
    A.R. Ubbelohde and L.A. Lewis, “Graphite and its Crystal Compounds,” Oxford, 1960.Google Scholar
  4. 3.
    A. Herold, N. Platzer and R. Setton, Les Carbones, t. 2, 462.Google Scholar
  5. 4.
    L.B. Ebert, Ann. Rev. Mat. Sci. 6, 181 (1976).CrossRefGoogle Scholar
  6. 4a.
    F.R. Gamble and T.H. Geballe, Treatise on Solid State Chemistry, Vol. III, p. 89, Plenum, 1976.CrossRefGoogle Scholar
  7. 5.
    Mat. Sci. and Eng. 31, 1977.Google Scholar
  8. 6.
    A.W. Moore, A.R. Ubbelohde and D.A. Young, Proc. Roy. Soc. A280, 153 (1964).Google Scholar
  9. 7.
    I.L. Spain, A.R. Ubbelohde and D.A. Young, Proc. Roy. Soc. A262, 345 (1967).Google Scholar
  10. 8.
    I.L. Spain, Chem. and Phys. Carbon 8, 1 (1973).Google Scholar
  11. 9.
    C. Zeller, A. Denenstein and G.M.T. Foley, submitted to Rev. Sci. Instr.Google Scholar
  12. 10.
    C. Zeller and L.A. Pendrys, unpublished.Google Scholar
  13. 11.
    I.L. Spain, Mat. Sci. Eng. 31, 183 (1977).CrossRefGoogle Scholar
  14. 12.
    W.D. Ellenson, D. Semmingson, D. Guerard, D.G. Onn and J.E. Fischer, Mat. Sci. Eng. 31, 137 (1977).CrossRefGoogle Scholar
  15. 13.
    A. Herold, D. Billaud, D. Guerard and P. Lagrande, Mat. Sci. Eng. 31, 25 (1977).CrossRefGoogle Scholar
  16. 14.
    W. Rüdorff, Chimie 19, 489 (1965).Google Scholar
  17. 15.
    D. Guerard, P. Lagrange and A. Herold, Mat. Sci. Eng. 31, 29 (1977).CrossRefGoogle Scholar
  18. 16.
    G. Merle, I. Rashkov, C. Mai and J. Gole, Mat. Sci. Eng. 31, 39 (1977).CrossRefGoogle Scholar
  19. 17.
    L. Bonnetain, Ph. Touzain and A. Hamwi, Mat. Sci. Eng. 31, 45, (1977).CrossRefGoogle Scholar
  20. 18.
    K. Fredenhagen and G. Cadenbach, Z. Anorg. Chem. 158, 249 (1926).CrossRefGoogle Scholar
  21. 19.
    A. Herold, Bull. Soc. Chim. Fr., 999 (1955).Google Scholar
  22. 20.
    A.R. Ubbelohde, Proc. Fifth Carbon Conf., p.1 (1961).Google Scholar
  23. 21.
    J.E. Fischer, Mat. Sci. Eng. 31, 211 (1977).CrossRefGoogle Scholar
  24. 22..
    G.M.T. Foley, unpublished.Google Scholar
  25. 23.
    M. Zanini and J.E. Fischer, Mat. Eng. 31, 169 (1977).CrossRefGoogle Scholar
  26. 24.
    A.R. Ubbelohde, Proc. Roy. Soc. A304, 25 (1968).Google Scholar
  27. 25.
    J.G. Hooley, W.P. Garby and J. Valentin, Carbon 3, 7 (1965).CrossRefGoogle Scholar
  28. 26.
    W.C. Forsman, Proc. Thirteenth Carbon Conf., p. 153 (1977).Google Scholar
  29. 27.
    S. Laughin, R. Grayeski and J.E. Fischer, J. Chem. Phys. (October 1978).Google Scholar
  30. 28.
    W.C. Forsman, F.L. Vogel, D.E. Carl and Jeffery Hoffman. To be published in Carbon.Google Scholar
  31. 29.
    W.C. Forsman and D.E. Carl. Submitted to Carbon.Google Scholar
  32. 30.
    N. Daumas and A. Herold, C.R. Serie C268, 373 (1969).Google Scholar
  33. 31.
    G.M.T. Foley, C. Zeller, E.R. Falardeau and F.L. Vogel, Sol. State Comm. 24, 371 (1977).CrossRefGoogle Scholar
  34. 32.
    F.L. Vogel, H. Fuzellier, C. Zeller and E.H. McRae, to be published in Carbon.Google Scholar
  35. 33.
    F.L. Vogel, G.M.T. Foley, C. Zeller, E.R. Falardeau and J. Gan, Mat. Sci. Eng. 31, 261 (1977).CrossRefGoogle Scholar
  36. 34.
    F.L. Vogel, J. Gan and T.C. Wu, Proc. Fifth London International Conf. on Carbon and Graphite (1978).Google Scholar
  37. 35.
    Jean Bernard Perrachon, Masters Thesis, University of Pennsylvania, 1978 (unpublished).Google Scholar
  38. 36.
    F. Lincoln Vogel, J. Mat. Sci. 12, 982 (1977).CrossRefGoogle Scholar
  39. 37.
    L.R. Hanlon, E.R. Falardeau and J.E. Fischer, Solid State Coram. 24, 377 (1977).CrossRefGoogle Scholar
  40. 38.
    J.E. Fischer, “Electronic Properties of Graphite Intercalation Compounds,” chapter in “Intercalated Layer Materials,” F. Levy, ed. (D. Reidel, Holland) (in press).Google Scholar

Copyright information

© Plenum Press, New York 1979

Authors and Affiliations

  • F. Lincoln Vogel
    • 1
  1. 1.Department of Electrical Engineering and Science and Laboratory for Research on the Structure of MatterUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations