Advertisement

Properties of Doped Polyacetylene, (Ch)x

  • R. L. Greene
  • T. C. Clarke
  • W. D. Gill
  • P. M. Grant
  • J. F. Kwak
  • G. B. Street
Part of the Nato Conference Series book series (NATOCS, volume 1)

Abstract

Linear polyacetylene, (CH)x is one of the simplest conjugated organic polymers, and it therefore has attracted the attention of polymer chemists and physicists for some time [1]. Each carbon atom is a bonded to one hydrogen and two neighboring carbon atoms consistent with sp2 hybridization. The II electrons delocalize into the bands in which carrier transport can occur. In the absence of bond alternation and Coulomb correlation the trans form of (CH)x would be a metal. In actuality the trans form of (CH)x has bond alternation and is thus a semiconductor. In a recent series of studies Shirakawa and coworkers [2,3,4] have succeeded in synthesizing polycrystalline films of (CH)x and have chemically doped these films with a variety of donors and acceptors to give n-type or p-type semiconductors. Transport and far IR transmission studies as a function of doping suggest that a semiconductor to metal transition occurs near 1 atomic % dopant concentration [3].

Keywords

Acceptor Doping Coulomb Correlation Neighboring Carbon Atom Solid State Comm Bond Alternation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    For a summary and detailed references see A. A. Ovchinnikov, Soviet Physics Uspekhi 15, 575 (1973).CrossRefGoogle Scholar
  2. 2.
    For example see To Ito, H. Shirakawa and S. Ikeda, J. Polym. Sci. Polym. Chem. Ed 13, 1943 (1975).Google Scholar
  3. 3.
    C. K. Chiang, et al., Phys. Rev. Lett. 39, 1098 (1977).CrossRefGoogle Scholar
  4. 4.
    C. K. Chiang, et al., J. Am. Chem. Soc. 100, 1013 (1978).CrossRefGoogle Scholar
  5. 5.
    R. H. Baughman, et al., to be published in J. Chem. Phys.Google Scholar
  6. 6.
    P. M. Grant, Bull. Am. Phys. Soc. 23, 305 (1978); P. M. Grant and I. P. Batra, submitted.Google Scholar
  7. 7.
    R. L. Greene, J. F. Kwak, T. C. Clarke and G. B. Street, Bull. Am. Phys. Soc. 23, 156 (1978) andGoogle Scholar
  8. 7a.
    R. L. Greene, J. F. Kwak, T. C. Clarke and G. B. Street, Bull. Am. Phys. Soc. 23, 305 (1978); also submitted to Solid State Comm.Google Scholar
  9. 8.
    K. Seeger, W. D. Gill, T. Clarke and G. B. Street, Bull. Am. Phys. Soc. 23, 305 (1978); also submitted to Solid State Comm.Google Scholar
  10. 9.
    W. Bludau, T. C. Clarke, P. M. Grant and G. B. Street, Bull. Am. Phys. Soc. 23, 304 (1978); to be published.Google Scholar
  11. 10.
    T. C. Clarke, R. H. Geiss, J. F. Kwak and G. B. Street, accepted by Chem. Comm.Google Scholar
  12. 11.
    A. Matsui and K. Nakamura, Japan J. Appl. Phys. 6, 148 (1967).Google Scholar
  13. 12.
    N. F. Mott and E. A. Davis, Electronic Processes in Non-Crystalline Materials (Oxford, 1971).Google Scholar

Copyright information

© Plenum Press, New York 1979

Authors and Affiliations

  • R. L. Greene
    • 1
  • T. C. Clarke
    • 1
  • W. D. Gill
    • 1
  • P. M. Grant
    • 1
  • J. F. Kwak
    • 1
  • G. B. Street
    • 1
  1. 1.IBM Research LaboratorySan JoseUSA

Personalised recommendations