The Electrical Conductivity of TTF-TCNQ and Related Compounds

  • Meir Weger
Part of the Nato Conference Series book series (NATOCS, volume 1)


Charge-transfer complexes such as TTF-TCNQ have been the center of intensive research because of their high electrical conductivity, which is close to that of metals. Therefore, any understanding of these interesting materials, as well as a meaningful discussion about future progress in their research, requires some understanding of the mechanism giving rise to the electrical resistivity. Nevertheless, the understanding of the resistivity has not been in the center of research in this field. Still, several conflicting theories have been proposed to account for the resistivity, and caused quite a measure of controversy. In contrast, the experimental situation is far more satisfying. The electrical resistivity, its temperature and pressure dependence, is by now well established. Experiments on the frequency dependence and the effect of radiation damage exist. The Hall mobility and magnetoresistance have been investigated; related transport phenomena, such as thermoelectric power, heat conductivity, and spin diffusion are known. A rather large number of high-conductivity charge transfer complexes are by now known. Recently Shubnikov-de Haas oscillations were seen in HMTSF-TCNQ, providing the most striking evidence for the metallic nature of this substance.


Pressure Dependence Hall Mobility Spin Susceptibility Hole Pocket Phonon Drag 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G.A. Thomas et al, Phys. Rev. B13, 5105 (1976).Google Scholar
  2. 2.
    A.J. Heeger in “Chemistry and Physics of One Dimensional Metals”, H.J. Keller Editor, NATO ASI Series B25, Plenum Press, New York, 1977.Google Scholar
  3. 3.
    R.P. Groff, A. Suna, and R.E. Merrifield, Phys. Rev. Lett., 33, 418 (1974).CrossRefGoogle Scholar
  4. 4.
    J.P. Ferraris and T.F. Finnegan, Solid State Commun., 18, 1169 (1976).CrossRefGoogle Scholar
  5. 5.
    J.R. Cooper, D. Jerome, M. Weger, and S. Etemad, J. Physique Lett., 36, L-219 (1975).CrossRefGoogle Scholar
  6. 6.
    C.W. Chu, J.M. Harper, T.H. Geballe, and R.L. Greene, Phys. Rev. Lett., 31, 1431 (1973).CrossRefGoogle Scholar
  7. 7.
    R.H. Friend, M. Miljak, D. Jerome, D.L. Decker and D. Debray, J. Physique Lett., 39, L-134 (1978).CrossRefGoogle Scholar
  8. 8.
    D. Jerome and M. Weger in Ref. 2.Google Scholar
  9. 9.
    J. R. Cooper, Phys. Rev. B Comments (in press)Google Scholar
  10. 9a.
    D. Jerome, J. Physique Lett., 38, L-489 (1977).CrossRefGoogle Scholar
  11. 10.
    C.K. Chiang, M.J. Cohen, P.R. Newman, and A.J. Heeger, Phys. Rev. B16, 3163 (1977).Google Scholar
  12. 11.
    M. Kaveh, H. Gutfreund, and M. Weger, Phys. Rev. B (in press).Google Scholar
  13. 12.
    L. Zuppiroli, J. Arionceau, M. Weger, K. Bechgaard, and C. Weyl, J. Physique Lett., 39, L-170 (1978).CrossRefGoogle Scholar
  14. 13.
    C.S. Jacobsen, K. Mortensen, J.R. Andersen, and K. Bechgaard, Phys. Rev. B18, 905 (1978).Google Scholar
  15. 14.
    P.M. Chaikin, R.L. Greene, S. Etemad, and E.M. Engler, Phys. Rev. B13, 1627 (1976).Google Scholar
  16. 15.
    J.R. Cooper, M. Miljak, G. Delplanque, D. Jerome, M. Weger, J. M. Fabre, and L. Giral, J. Physique, 38, 1097 (1977).CrossRefGoogle Scholar
  17. 16.
    W.J. Gunning, A.J. Heeger, I.F. Shchegolev, and S.P. Zolotukia, Solid State Commun., 26, 981 (1978).CrossRefGoogle Scholar
  18. 17.
    M.B. Salomon, J.W. Bray, G. de Pasquali, R.A. Craven, G. Stucky, and A. Schultz, Phys. Rev. B11, 619 (1975).Google Scholar
  19. 18.
    J.R. Cooper, M. Weger, G. Delplanque, D. Jerome, and K. Bechgaard, J. Physique Lett., 37, L-349 (1976).CrossRefGoogle Scholar
  20. 19.
    L. Coleman, Thesis, University of Pennsylvania, 1975 (unpublished).Google Scholar
  21. 20.
    J.R. Cooper, S. Etemad, D. Jerome, and E.M. Engler, Solid State Commun., 22, 257 (1977).CrossRefGoogle Scholar
  22. 21.
    G. Soda, D. Jerome, M. Weger, J. Alizon, J. Gallice, H. Robert, J.M. Fabre, and L. Giral, J. Physique, 38, 931 (1977).CrossRefGoogle Scholar
  23. 22.
    J.R. Cooper, M. Weger, D. Jerome, D. Lefur, K. Bechgaard, D.O. Cowan, and A.N. Bloch, Solid State Commun., 19, 749 (1976).CrossRefGoogle Scholar
  24. 23.
    G. Soda, D. Jerome, M. Weger, K. Bechgaard, and E. Pedersen, Solid State Commun., 20, 107 (1976).CrossRefGoogle Scholar
  25. 24.
    J.C. Scott, A.F. Garito, and A.J. Heeger, Phys. Rev. B10, 3131 (1974).Google Scholar
  26. 25.
    C. Bertier, J.R. Cooper, D. Jerome, G. Soda, C. Weyl, J.M. Fabre, and L. Giral, Mol. Cryst. Liq. Cryst., 32, 267 (1976).CrossRefGoogle Scholar
  27. 26.
    S. Kagoshima, H. Anzai, K. Kajimura, and T. Ishiguro, J. Phys. Soc. Japan, 39, 1143 (1975);CrossRefGoogle Scholar
  28. 26.
    J.P. Pouget, S.K. Khana, F. Denoyer, R. Comes, A.F. Garito and A.J. Heeger, Phys. Rev. Lett., 37, 437 (1976).CrossRefGoogle Scholar
  29. 27.
    K. Seeger and A. Maurer, Solid State Commun, (in press).Google Scholar
  30. 28.
    E.M. Conwell, Phys. Rev. B Comments (in press).Google Scholar
  31. 29.
    H. Gutfreund, B. Horovitz, and M. Weger, J. Phys. C7, 383 (1974).Google Scholar
  32. 30.
    E.M. Conwell, Phys. Rev. Lett., 39, 777 (1977).CrossRefGoogle Scholar
  33. 31.
    D. Allender, J.W. Bray, and J. Bardeen, Phys. Rev. B9, 119 (1974).Google Scholar
  34. 32.
    P.A. Lee, T.M. Rice, and P.W. Anderson, Phys. Rev. Lett., 31, 462 (1973).CrossRefGoogle Scholar
  35. 33.
    A.A. Abrikosov and I.A. Ryzhkin, Solid State Commun., 24, 319 (1977).CrossRefGoogle Scholar
  36. 34.
    E.I. Rashba, A.A. Gogolin, and V.I. Melnikov, in “Organic Conductors and Semiconductors”, conference proceedings, Siofok Hungary 1976, Lecture Notes in Physics, 65, Springer Verlag (1977), p. 265.Google Scholar
  37. 35.
    M.H. Cohen, in “Organic Conductors and Semiconductors”, conference proceedings, Siofok Hungary 1976, Lecture Notes in Physics, p. 225.Google Scholar
  38. 36.
    M. Weger, Solid State Commun., 19, 1149 (1976).CrossRefGoogle Scholar
  39. 37.
    P.E. Seiden and D. Cabib, Phys. Rev. B13, 1846 (1976).Google Scholar
  40. 38.
    P.E. Seiden (unpublished).Google Scholar
  41. 39.
    H. Morawitz, Phys. Rev. Lett., 34, 1096 (1975); H. Morawitz, ref. 34, p. 303;CrossRefGoogle Scholar
  42. 39a.
    H. Morawitz, in “Synthesis and Structure of Low Dimensional Systems”, Proceedings of a conference, New York Academy of Sciences, New York, 1977.Google Scholar
  43. 40.
    M. Weger and J. Friedel, J. Physique, 38, 241 (1977);Google Scholar
  44. 40a.
    M. Weger and J. Friedel, J. Physique 38, 881 (1977).CrossRefGoogle Scholar
  45. 41.
    H. Gutfreund and M. Weger, Phys. Rev. B16, 1753 (1977);Google Scholar
  46. 41a.
    H. Gut-freund, M. Weger, and M. Kaveh, Solid State Commun., 27, 53 (1978).Google Scholar
  47. 42.
    M. Weger and H. Gutfreund, Comments on Solid State Physics, 8, 135 (1978).Google Scholar
  48. 43.
    P.M. Chaikin, R.L. Greene, and E.M. Engler, Solid State Commun., 25, 1009 (1978).CrossRefGoogle Scholar
  49. 44.
    H.A. Pohl and M. Pollak, J. Chem. Phys., 66, 4031 (1977).CrossRefGoogle Scholar
  50. 45.
    M. Weger and M. Kaveh (unpublished).Google Scholar
  51. 46.
    M. Weger, in proceedings of LT15 conference, J. Physique (in press).Google Scholar
  52. 47.
    J.B. Torrance, Y. Tomkievicz, and B.S. Silverman, Phys. Rev. B15, 4738 (1977).Google Scholar
  53. 48.
    S. Marianer, M. Weger, and H. Gutfreund (unpublished).Google Scholar
  54. 49.
    A.J. Schultz, G.D. Stucky, R.H. Blessing, and P. Coppens, J. Am. Chem. Soc, 98, 3194 (1976).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1979

Authors and Affiliations

  • Meir Weger
    • 1
  1. 1.Hebrew UniversityJerusalemIsrael

Personalised recommendations