Lateral Mobility and Internalization of Hormone Receptors to Human Chorionic Gonadotropin in Cultured Rat Granulosa Cells

  • A. Amsterdam
  • F. Kohen
  • A. Nimrod
  • H. R. Lindner
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 112)


Since the introduction by Singer and Nicholson (1) of the concept of membrane fluidity and lateral mobility of membrane proteins, such mobility has been demonstrated for several membrane proteins, including receptors to immunoglobulins (2), lectins (3), catecholamines (4) and acetylcholine (5,6). Moreover, it was recently suggested that receptors on the plasma membrane can be internalized after binding specific ligands (7,8). In this study we have shown by high resolution autoradiography that clusters of receptor-bound human chorionic gonadotropin (hCG) are formed on the cell membrane of cultured granulosa cells, and that the bound hormone is subsequently internalized into lysosomes where degradation may occur. Lateral movement of receptor-bound hormone to form clusters, patches and caps following association with antibody to the hormone was demonstrated using the indirect immunofluorescence technique.


Granulosa Cell Corpus Luteum Lateral Mobility Indirect Immunofluorescence Technique Electron Microscope Autoradiograph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    S.J. Singer and G.L. Nicolson. Science, 7(1972)720.CrossRefGoogle Scholar
  2. (2).
    S. de Petris and M. Raff. Eur.J.Immunol. 2(1972)523.PubMedCrossRefGoogle Scholar
  3. (3).
    G.M. Edelman. Science,192(1976)318.Google Scholar
  4. (4).
    J. Orly and M. Schramm. Proc.Nat.Acad.Sci.U.S.A. 73(1976)4410.PubMedCrossRefGoogle Scholar
  5. (5).
    J. Prives, I. Silman and A. Amsterdam. Ce11.7(1976)543.Google Scholar
  6. (6).
    J. Prives, L. Hoffman, R. Tarab-Hazdai, S. Fuchs and A. Amsterdam, in preparation.Google Scholar
  7. (7).
    G. Carpenter and S. Cohen. J.Cell.Biol. 71(1976)159.PubMedCrossRefGoogle Scholar
  8. (8).
    M.S. Brown and J.L. Goldstein. Science 191(1976)150.Google Scholar
  9. (9).
    T.T. Chen, J.H. Abel, Jr., M.I. McCellan, H.R. Sawyer, M.A. Diekman and G.D. Niswender. Cytobiologie. 14(1977)412.Google Scholar
  10. (10).
    S.A. Lamprecht, U. Zor, Y. Salomon, Y. Koch, K. Ahren and H.R. Lindner. J.Cycl.Nucl.Res. 3(1977)69.Google Scholar
  11. (11).
    P.M. Conn, M. Conti, J.P. Harwood, M.L. Dufau and K.J. Catt. J.Cell.Biol. 75(1977)192a.Google Scholar
  12. (12).
    G.E. Palade. In: “Subcellular Particles” ed. T. Hayashi ( Donald Press, New York ). 1959, pp. 64–80.Google Scholar
  13. (13).
    A. Amsterdam, Z. Hollander, A. Nimrod, R. Reisel and F. Kohen. J.Cell.Biol. 75(1977)222a.Google Scholar
  14. (14).
    A. Amsterdam and J.D. Jamieson. J.Cell.Biol. 63 (1974) 1057.PubMedCrossRefGoogle Scholar
  15. (15).
    A. Amsterdam, Y. Koch, M.E. Lieberman and H.R. Lindner. J.Cell. Biol. 67(1975)894.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1979

Authors and Affiliations

  • A. Amsterdam
    • 1
  • F. Kohen
    • 1
  • A. Nimrod
    • 1
  • H. R. Lindner
    • 1
  1. 1.Department of Hormone ResearchThe Weizmann Institute of ScienceRehovotIsrael

Personalised recommendations