Relationship Between Steroidogenesis and Oocyte Maturation in Rat Graafian Follicles Cultured in vitro

  • C. Readhead
  • M. H. Kaufman
  • A. W. Schuetz
  • G. E. Abraham
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 112)


Rat Graafian follicles were dissected from ovaries during the morning of proestrus and incubated invarious media. After an 8 h incubation period, ovarian follicles were collected and analyzed, by radioimmunoassay, for progesterone, 17α-hydroxyprogesterone, androstenedione, estradiol-17β, and dihydrotestosterone. Following incubation in proestrus (a.m.) serum, preovulatory follicles secreted all these steroids and the output of progesterone, 17α-hydroxyprogesterone and androstenedione was markedly stimulated following the addition of LH to the media.

Follicle-enclosed oocytes resumed meiosis when incubated in proestrus serum without added LH. However, germinal vesicle breakdown (GVBD) under these conditions was considerably slower than that observed following addition of LH to the medium. “Spontaneous” maturation of oocytes in proestrus serum was associated with increased production of steroids. Oocyte maturation and steroidogenesis both occurred following incubation of ovarian follicles in serum obtained from hypophysectomized rats. Addition of LH to the media markedly accelerated these responses. These results suggest that oocyte maturation and steroidogenesis also occur in cultured ovarian follicles in the absence of gonadotrophic hormones. The relationship between steroidogenesis and/or spontaneous oocyte maturation are discussed.


Follicular Fluid Oocyte Maturation Ovarian Follicle Polar Body Germinal Vesicle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    T. A. Daane and A. F. Parlow. Endocrinology 88 (1971) 653.PubMedCrossRefGoogle Scholar
  2. (2).
    A. Tsafriri and P. F. Kraicer. J. Reprod. Fert. 29 (1972) 387.CrossRefGoogle Scholar
  3. (3).
    A. Tsafriri, H. R. Lindner, U. Zor, and S. A. Lamprecht. J. Reprod. Fert. 31 (1972) 39.CrossRefGoogle Scholar
  4. (4).
    R. M. Moor. J. Reprod. Fert. 32 (1973) 545.CrossRefGoogle Scholar
  5. (5).
    W. J. LeMaire and J. M. Marsh. J. Reprod. Fert. Suppl. 22 (1975) 53.Google Scholar
  6. (6).
    E. V. YoungLai. J. Endoer. 71 (1976) 167.CrossRefGoogle Scholar
  7. (7).
    G. Pincus and E. V. Enzmann. J. Exp. Med. 62 (1935) 665.PubMedCrossRefGoogle Scholar
  8. (8).
    R. G. Edwards. Nature 208 (1965) 349.PubMedCrossRefGoogle Scholar
  9. (9).
    H. R. Lindner, A. Tsafriri, M. E. Lieberman, U. Zor, Y. Koch, S. Bauminger, and A. Barnea. Rec. Prog. Horm. Res. 30 (1974) 79.PubMedGoogle Scholar
  10. (10).
    R. F. Seamark, R. M. Moor, and J. E. A. McIntosh. J. Reprod. Fert. 41 (1974) 143.CrossRefGoogle Scholar
  11. (11).
    J. M. Marsh. Biol. Reprod. 14 (1976) 30.PubMedCrossRefGoogle Scholar
  12. (12).
    C. Readhead, M. H. Kaufman, and A. W. Schuetz. Biol. Reprod. (submitted).Google Scholar
  13. (13).
    G. E. Abraham. Path. Biol. 23 (1975) 889.Google Scholar
  14. (14).
    G. E. Abraham, R. S. Swerdloff, D. Tulchinsky, and W. D. Odell. J. Clin. Endoc. Metab. 32 (1971) 619.CrossRefGoogle Scholar
  15. (15).
    G. E. Abraham, R. S. Swerdloff, D. Tulchinsky, K. Hopper, and W. D. Odell. J. Clin. Endoc. Metab. 33 (1971) 42.CrossRefGoogle Scholar
  16. (16).
    G. E. Abraham, K. Hopper, D. Tulchinsky, R. S. Swerdloff, and W. D. Odell. Analyt. Letters 4 (1971) 325.CrossRefGoogle Scholar
  17. (17).
    G. E. Abraham and Z. H. Chakmakjian. J. Clin. Endoc. Metab. 37 (1973) 581.CrossRefGoogle Scholar
  18. (18).
    G. E. Abraham, F. S. Manlimos, M. Solis, and A. C. Wickman. Clin. Biochem. 8 (1975) 374.PubMedCrossRefGoogle Scholar
  19. (19).
    A. Tsafriri and C. P. Channing. Endoc. 96 (1975) 922.CrossRefGoogle Scholar
  20. (20).
    R. B. L. Gwatkin and O. F. Andersen. Life Sciences 19 (1976) 527.PubMedCrossRefGoogle Scholar
  21. (21).
    A. W. Schuetz. Biol. Reprod. 10 (1974) 150.PubMedCrossRefGoogle Scholar
  22. (22).
    A. W. Schuetz. J. Exp. Zool. 166 (1967) 347.PubMedCrossRefGoogle Scholar
  23. (23).
    W. Wasserman and Y. Masui. Biol. Reprod. 11 (1974) 133.PubMedCrossRefGoogle Scholar
  24. (24).
    K. Drury and S. Schoderet-Slatkine. Cell 4 (1975) 269.PubMedCrossRefGoogle Scholar
  25. (25).
    M. E. Liebermân, A. Tsafriri, S. Bauminger, W. P. Collins, K. Ahren, and H. R. Lindner. Acta Endocr. 83 (1976) 151.PubMedGoogle Scholar
  26. (26).
    R. H. F. Hunter, B. Cook, and T. G. Baker. Nature 260 (1976) 156.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1979

Authors and Affiliations

  • C. Readhead
    • 1
  • M. H. Kaufman
    • 2
  • A. W. Schuetz
    • 3
  • G. E. Abraham
    • 4
  1. 1.Physiological LaboratoryUniversity of CambridgeCambridgeEngland
  2. 2.Department of AnatomyUniversity of CambridgeCambridgeEngland
  3. 3.The Johns Hopkins UniversityBaltimoreUSA
  4. 4.Department of Obstetrics and GynaecologyUCLALos AngelesUSA

Personalised recommendations