Advertisement

Radiative Pion Capture in Medium Mass Nuclei: 32S, 40Ca+)

  • J. C. Alder
  • W. Dahme
  • B. Gabioud
  • C. Joseph
  • J. F. Loude
  • H. Medicus
  • N. Morel
  • H. Panke
  • A. Perrenoud
  • J. P. Perroud
  • D. Renker
  • G. Strassner
  • M. T. Tran
  • P. Truöl
  • E. Winkelmann

Abstract

The comparison between enelastic electron scattering, photo-absorption and radiative pion capture for 1p - shell nuclei has shed some light on the structure of the isovector M1 and spin-isospin transitions1. The principle reason for this is, that in the π,γ -reaction the Tz = +1analog states to the ΔT = 1 excitations in the target nucleus are observed, whereas with conventional electromagnetic probes ΔT = 0 and ΔT = 1 can be excited. It is found thatin+ the impulse approximation matrix-elements of the type \( < {J_f}||{\tau ^ + }jL(kr){\{ \mathop \sigma \limits^ \to \mathop {{Y_L}}\limits^ \to \} ^J}||{J_i} > \) contribute to the radiative pion capture rate, and are thus identical to the spin-density part of the electromagnetic M1, the spin-isospin dipole or quadrupole operator for different JL, respectively. To test whether these ideas are still meaningful for nuclei in the s-d shell, we selected target nuclei with known Ml-levels. Good cases are 28Si, already discussed previously2 and 32S, for which we present preliminary results here. We also include some results on 40Ca, which had been measured previously with inferior resolution3 and which were obtained in the process of background studies for a radiative muon capture experiment4.

Keywords

Muon Capture Pion Process Quadrupole Operator Inelastic Electron Scattering6 Medium Mass Nucleus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H.W. Baer, K.M. Crowe, P. Truol, Adv. Nucl. Phys. 9, 177 (1977).Google Scholar
  2. 2.
    J.C. Alder., contribution to Vllth Int. Conf. on High-Energy Physics and Nuclear Structure, Zurich (1977).Google Scholar
  3. 3.
    J.A. Bistirlich., Phys. Rev. C5, 1867 (1972).ADSCrossRefGoogle Scholar
  4. 4.
    A. Frischknecht., Helv. Phys. Acta (1978).Google Scholar
  5. 5.
    H. Davies, H. Miurhead, J.N. Woulds, Nucl. Phys. 78, 673 (1966).CrossRefGoogle Scholar
  6. 6.
    L.W. Fagg., Phys. Rev. C4, 2089 (1971).ADSGoogle Scholar
  7. 7.
    D. Sober, CUW, private communication.Google Scholar
  8. 8.
    R.A. Eramzhyan., Dubna Preprint E2 - 1123 (1978).Google Scholar
  9. 9.
    R. Guy, J.M. Eisenberg, Phys. Letters 33B, 137 (1970).ADSGoogle Scholar
  10. 10.
    K. Ebert, private communication.Google Scholar
  11. 11.
    K. Ebert, J. Meyer-ter Vehn, Nucl. Phys., to be published.Google Scholar

Copyright information

© Plenum Press, New York 1979

Authors and Affiliations

  • J. C. Alder
    • 1
  • W. Dahme
    • 1
  • B. Gabioud
    • 1
  • C. Joseph
    • 1
  • J. F. Loude
    • 1
  • H. Medicus
    • 1
  • N. Morel
    • 1
  • H. Panke
    • 1
  • A. Perrenoud
    • 1
  • J. P. Perroud
    • 1
  • D. Renker
    • 1
  • G. Strassner
    • 1
  • M. T. Tran
    • 1
  • P. Truöl
    • 1
  • E. Winkelmann
    • 1
  1. 1.Lausanne — Munchen — Zürich Collaboration, SINVilligenSwitzerland

Personalised recommendations