Advertisement

Investigation of Analogs of M1, E1 and M2 Transitions in 10B, 12C and 14N Through Radiative Pion Capture

  • J. C. Alder
  • W. Dahme
  • B. Gabioud
  • C. Joseph
  • J. F. Loude
  • N. Morel
  • H. Panke
  • A. Perrenoud
  • J. P. Perroud
  • D. Renker
  • G. Strassner
  • M. T. Tran
  • P. Truöl
  • E. Winkelmann

Abstract

For the selfconjugate nuclei 10B, 12C and 14N some of the most convincing evidence was compiled, which demonstrated the potential of the radiative pion capture reaction1,2. The reasons for this are twofold. Firstly the level spacing in the bound state region in the final nuclei 10Be, 12B and 14C is sufficiently large, that even with a resolution of 2 MeV certain transitions can he isolated experimentally. Secondly the observed transition strength is concentrated into a few levels, mainly analogs to strong isovector M1-transitions in the target nucleus. In addition a considerable fraction of the reaction proceeds through spin-isospin dipole states with prominent Jπ=1 and 2 structures observed in 12C. In view of the impact of these findings for future radiative pion capture experiments, it seemed appropriate to remeasure these photon spectra with improved resolution (900 keV FWHM at 129.4 MeV) and statistics in our pairspectrometer at SIN3. Figure 1 shows the result, where only the important part of the spectrum above 100 MeV is displayed. In Table I we present the photon energies, excitation energies and branching ratios for the different transitions.

Keywords

Target Nucleus Photonuclear Reaction Giant Resonance Shell Model Calculation Inelastic Electron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Notes

  1. 1.
    J.A. Bistirlich., Phys. Rev. Letters 25, 689 (1970).ADSCrossRefGoogle Scholar
  2. 2.
    H.W. Baer., Phys. Rev. C10, 1140 (1974).ADSGoogle Scholar
  3. 3.
    J.C. Alder., submitted to Nucl. Instr. and Methods.Google Scholar
  4. 4.
    G.E. Dogotar., Nucl. Phys. A282, 474 (1977).CrossRefGoogle Scholar
  5. 5.
    S. Cohen, D. Kurath, Nucl. Phys. 73, 1 (1965).CrossRefGoogle Scholar
  6. 6.
    F. Ajzenberg-Selov, T. Lauritsen, Nucl. Phys. A227, 1 (1974)ADSGoogle Scholar
  7. 7.
    C.F. Maguire, C. Werntz, Nucl. Phys. A205, 211 (1973).CrossRefGoogle Scholar
  8. 8.
    H. Ohtsubo., Nucl. Phys. A224, 164 (1974).CrossRefGoogle Scholar
  9. 9.
    F.J. Kelly, H. Uberall, Nucl. Phys. A118, 302 (1968).CrossRefGoogle Scholar
  10. 10.
    S. Skupsky, Nucl. Phys. A178, 289 (1971).CrossRefGoogle Scholar
  11. 11.
    H. Ohtsubo, private communication.Google Scholar
  12. 12.
    G.E. Dogotar., Dubna-Preprint E2 - 11275 (1978).Google Scholar
  13. 13.
    A. Richter, Int. School on Electro- and Photonuclear Reactions, Erice (Sicily ) (1976).Google Scholar

Copyright information

© Plenum Press, New York 1979

Authors and Affiliations

  • J. C. Alder
    • 1
  • W. Dahme
    • 1
  • B. Gabioud
    • 1
  • C. Joseph
    • 1
  • J. F. Loude
    • 1
  • N. Morel
    • 1
  • H. Panke
    • 1
  • A. Perrenoud
    • 1
  • J. P. Perroud
    • 1
  • D. Renker
    • 1
  • G. Strassner
    • 1
  • M. T. Tran
    • 1
  • P. Truöl
    • 1
  • E. Winkelmann
    • 1
  1. 1.Lausanne-München-Zürich Collaboration, SINVilligenSwitzerland

Personalised recommendations