Advertisement

Methylation of Transfer Ribonucleic Acid

  • F. Cimino
  • C. Traboni
  • P. Izzo
  • F. Salvatore

Abstract

The central role of transfer ribonucleic acid (tRNA) in the multistep mechanism of cellular protein biosynthesis justifies by itself the existence of a variety of specific molecules, all of which appear to have a spatial structure basically similar to each other. Moreover, in recent years several other roles of tRNA, besides the structural ones (i.e., those related to the formation of a protein), have been shown to be related to some regulatory cellular processes (1,2). Therefore, a variety of tRNA molecules exists within a single cell (up to 50–60 species), which is due to the different primary sequence of the four major nucleosides, as well as to a series of modified, or minor nucleosides which are formed at posttrancriptional level. Among these modifications, methylation is the most frequent, both in prokaryote and in eukaryote cells, allowing the formation of a variety of methylated nucleosides, which represent up to 50 per cent of the total number of the modified nucleosides (more than 50 have been identified so far) (3).

Keywords

tRNA Molecule tRNA Species Modify Nucleoside Polynucleotide Chain Methylase Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Clark, B.F.C., Prog.Nucleic Acid Res.Mol.Biol., 20, 1 (1977).PubMedCrossRefGoogle Scholar
  2. 2.
    Cortese, R.,in Biological Regulation and Development, R.F. Goldberger (Ed), vol.I ( Plenum Press, New York and London, 1978 ), p. 401.Google Scholar
  3. 3.
    Nau, F., Biochimie, 58, 629 (1976).Google Scholar
  4. 4.
    Kim, S.H., ana Sussman, J.L., Horizons Biochem.Biophys., 4, 159 (1977).Google Scholar
  5. 5.
    Rich, A., and Kim, S.H., Scientific American, vol. 238, n.l, p. 52 (1978).Google Scholar
  6. 6.
    Smith, J.D., Prog.NucZeic Acid Res.Mol.Biol., 16, 25 (1976).CrossRefGoogle Scholar
  7. 7.
    Salvatore, F., and Cimino, F., in The Biochemistry of Adenosylmethionine, F. Salvatore, et al., (Eds.), ( Columbia University Press, New York, 1977 ), p. 187.Google Scholar
  8. 8.
    Borek, E., and Kerr, S.J., Adv.Cancer Res., 15, 163 (1972).Google Scholar
  9. 9.
    Kerr, S.J., Adv.Enzyme ReguZ., 13, 379 (1974).CrossRefGoogle Scholar
  10. 10.
    Kuchino, Y., and Borek, E., Nature,271, 126 (1978)Google Scholar
  11. 11.
    Littauer, U.Z., and Inouye, H., Ann.Rev.Biochem., 42, 439 (1973).PubMedCrossRefGoogle Scholar
  12. 12.
    Kerr, S.J., and Borek, E., in The Enzymes, P.D. Boyer (Ed.), vol.9, pt.B, 3d ed. ( Academic Press, New York, 1973 ), p. 167.Google Scholar
  13. 13.
    Pope, W.T., Brown, A., and Reeves, R.H., Nucleic Acid Res., 5, 1041 (1978).PubMedCrossRefGoogle Scholar
  14. 14.
    Rizzino, R., Mastanduno, M., and Freundlich, M., Biochim.Biophys.Acta, 475, 267 (1977).PubMedGoogle Scholar
  15. 15.
    Colonna, A., and Kerr, S.J., Cell, in press (1978).Google Scholar
  16. 16.
    Kersten, H., Sandig, L., and Arnold, H.H., FEBS Let ters, 55, 57 (1975).CrossRefGoogle Scholar
  17. 17.
    Delk, A.S., and Rabinowitz, J.C., Proc.NatZ.Acad. Sci. U.S.A., 72, 528 (1975).Google Scholar
  18. 18.
    Wierzbicka, H., Jakubowski, H., and Pawelkiewicz, J., Nucleic Acid Res., 2, 101, (1975).Google Scholar
  19. 19.
    Glick, J.M., and Leboy, P.S., J.BioZ.Chem., 252, 4790 (1977).Google Scholar
  20. 20.
    Aschoff, H.J., and Kersten, W., in The Biochemistry of AdenosyZmethionine, F. Salvatore, et al., (Eds.), ( Columbia University Press, New York 1977 ) p. 231.Google Scholar
  21. 21.
    Cimino, F., Traboni, C., Colonna, A., Izzo, P., and Salvatore, F., submitted for publication.Google Scholar
  22. 22.
    Björk, G.R., and Isaksson, L.A., J.MoZ.Biol., 51, 83, (1970).CrossRefGoogle Scholar
  23. 23.
    Aschoff, H.J., Elten, H. Arnold, H.H., Mahal, G., Kersten, W., and Kersten, H., Nucleic Acids Res., 3109 (1976).Google Scholar
  24. 24.
    Björk, G.R., and Kjellin-Strgby, K., in. The Biochem istry of Adenosylmethionine, F. Salvatore et al. (Eds.), ( Columbia University Press, New York, 1977 ), p. 216.Google Scholar
  25. 25.
    Izzo, P., and Gantt, R.R., Biochemistry, 16, 3576, 1977.PubMedCrossRefGoogle Scholar
  26. 26.
    Singer, C.E., Smith, G.R., Cortese, R., and Ames, B.N., Nature New Biology, 238, 72 (1972).Google Scholar

Copyright information

© Plenum Press, New York 1979

Authors and Affiliations

  • F. Cimino
    • 1
  • C. Traboni
    • 1
  • P. Izzo
    • 1
  • F. Salvatore
    • 1
  1. 1.Istituto di Chimica Biologica 2 Facoltà di Medicina e ChirurgiaUniversità di NapoliNapoliItaly

Personalised recommendations