Advertisement

The Physical Map of the Various Transcripts of Rat Liver Mitochondrial DNA

  • C. Saccone
  • G. Pepe
  • H. Bakker
  • M. Greco
  • C. De Giorgi
  • A. M. Kroon

Abstract

It is well known that mitochondria and chloroplasts possess their own DNA. Eukaryotic cell contains therefore at least two or, in the case of plants and plastid-containing micro-organisms, even three different genetic systems (1–4). The organelle genomes show a pattern of cytoplasmic and maternal inheritance. For a number of features in lower organisms this has been known already for a long time. Recently it has been shown that the same holds for the mitochondrial genome of animal cells (5–8). Although the genetic function of the organelle genomes is not yet known in all details, it is evident they are indispensable and vital for eukaryotic organisms. For the expression of their genomes, the organelles depend on the nucleus. They constitute heteronomous genetic entities, their expression and continuity being ensured by the existence within the organelles of elements coded for and synthesized by the main genetic system of the cell, the nuclear-cytoplasmic genetic system. This implies that a much higher level of genetic complexity is reached in the eukaryotic cell as compared to the prokaryotic cell. Although also in prokaryotes extrachromosomal genetic elements such as plasmids may exist, the obvious difference is that the products of transcription and translation of these elements are not obligatory for the cells to survive as is the case for the mitochondrial and chloroplast genomes.

Keywords

Mitochondrial Genome tRNA Gene Cellulose Column Organelle Genome Restriction Endonuclease Enzyme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Saccone, C. and A.M. Kroon. The biogenesis of mitochondria. (1974) Academic Press, New York.Google Scholar
  2. 2.
    Saccone, C. and A.M. Kroon. The genetic function of mitochondrial DNA. (1976) North-Holland, Amsterdam.Google Scholar
  3. 3.
    Bucher, Th., W. Neupert, W. Sebald and S. Warner. Genetics and biogenesis of chloroplasts and mitochondria. (1976) North-Holland, Amsterdam.Google Scholar
  4. 4.
    Bandlow, W., R.J. Schweyen, K. Wolf and F. Kaudewitz. Mitochondria 1977. Genetics and biogenesis of mitochondria. ( 1977 ) Walter de Gruyter, Berlin.Google Scholar
  5. 5.
    Hutchison, C.A. III, J.E. Newbold, S.S. Potter and M.H. Edgell. Maternal inheritance of mammalian mitochondrial DNA. Nature (1974) 251, 536–538.PubMedCrossRefGoogle Scholar
  6. 6.
    Buzzo, K., D.L. Fouts and D.R. Wolstenholme. Eco RI cleavage site variants of mitochondrial DNA molecules from rats. Proc. Natl. Acad. Sci. USA (1978) 75, 909–913.PubMedCrossRefGoogle Scholar
  7. 7.
    Kroon, A.M., W.M. de Vos and H. Bakker. The heterogeneity of rat liver mitochondrial DNA. Biochim. Biophys. Acta. In press.Google Scholar
  8. 8.
    Hayashi, J., H. Yonekawa, O. Gotoh, J. Motohashi and Y. Tagashira. Two different molecular types of rat mitochondrial DNAs. Biochim. Biophys. Res. Commun. (1978) 81, 871–877.CrossRefGoogle Scholar
  9. 9.
    Kroon, A.M., G. Pepe, H. Bakker, M. Holtrop, J.E. Bollen, E.F.J. van Bruggen, P. Cantatore, P. Terpstra and C. Saccone. The restriction fragment map of rat-liver mitochondrial DNA. Biochim. Biophys. Acta (1977) 478, 128–145.PubMedGoogle Scholar
  10. 10.
    Saccone, C., G. Pepe, H. Bakker and A.M. Kroon. The genetic organization of rat liver mitochondrial DNA. Mitochondria 1977. Genetics and biogenesis of mitochondria. Walter de Gruyter, Berlin (1977) pp. 303–315.Google Scholar
  11. 11.
    Glilin, V., R. Crkvenjakov and C. Byus. Ribonucleic acid isolated by cesium chloride centrifugation. Biochem. (1974) 13, 2633–2637.CrossRefGoogle Scholar
  12. 12.
    Groot, G.S., R.A. Flavell, G.J. van Ommen and L.A. Grivell. Yeast mitochondrial RNA does not contain poly(A). Nature, Lond. (1974) 252, 167–169.CrossRefGoogle Scholar
  13. 13.
    Hendler, F.J., G. Padmanaban, J. Patzer, R. Ryan and M. Rabinowitz. Yeast mitochondrial RNA contains a short polyadenylic acid segment. Nature (1975) 258, 357–359.PubMedCrossRefGoogle Scholar
  14. 14.
    Hirsch, M. and S. Penman. Mitochondrial polyadenylic acid-containing RNA: localization and characterization. J. Mol. Biol. (1973) 80, 379–391.PubMedCrossRefGoogle Scholar
  15. 15.
    Ojala, D. and G. Attardi. Expression of the mítochondrial genome in HeLa cells XXII. Identification and partial characterization of multiple discrete poly(A)-containing RNA components coded for by mitochondrial DNA. J. Mol. Biol. (1974) 88, 205–219.CrossRefGoogle Scholar
  16. 16.
    Nudel, U., H. Soreq and U.Z. Littauer. Globin mRNA species containing poly(A) segments of different lengths. Eur. J. Biochem. (1976) 64, 115–121.PubMedCrossRefGoogle Scholar
  17. 17.
    Moorman, A.F.M., F. Lamie and L.A. Grivell. A coupled transcription-translation system derived from Escherichia colí: the use of immobilized deoxyribonuclease to eliminate endogenous DNA. FEBS Lett. (1976) 71, 67–72.CrossRefGoogle Scholar
  18. 18.
    Groot, G.S.P., N. van Harten-Loosbroek and J. Kreike. Electrophoretic behaviour of yeast mitochondrial translation products. Biochim. Biophys. Acta (1978) 517, 457–463.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1979

Authors and Affiliations

  • C. Saccone
    • 1
  • G. Pepe
    • 1
  • H. Bakker
    • 2
  • M. Greco
    • 1
  • C. De Giorgi
    • 1
  • A. M. Kroon
    • 2
  1. 1.Istituto di Chimica BiologicaUniversità di BariBariItaly
  2. 2.Laboratory of Physiological ChemistryState UniversityGroningenThe Netherlands

Personalised recommendations