Advertisement

Regulation of Macromolecular Synthesis during Sea Urchin Development

  • A. Arzone
  • V. Matranga
  • G. Giudice
  • V. Mutolo
  • H. Noll
  • A. M. Rinaldi
  • I. Salcher
  • M. L. Vittorelli

Abstract

Immediately following fertilization the sea urchin egg enters a period of very rapid cell division that cleaves the egg cell into about one thousand proportionately smaller cells, which form the swimming blastula, i.e. a larval form that is less vulnerable to environmental injuries since it is capable of actively swimming away from them.

Keywords

Macromolecular Synthesis Rapid Cell Division Cell BioI Cell Surface Macromolecule Swimming Blastula 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Giudice, G. Developmental Biology of the sea urchin embryos. Academic Press Inc., New York, (1973) 1–469.Google Scholar
  2. 2.
    Giudice, G. and V. Mutolo. Synthesis of ribosomal RNA during sea urchin development. Biochim. Biophys. Acta (1967) 138 276–285.Google Scholar
  3. 3.
    Giudice, G. and V. Mutolo. Synthesis of ribosomal RNA during sea urchin development. II. Electrophoretic analysis of nuclear and cytoplasmic RNA’s. Biochim. Biophys. Acta (1969) 179 341–347.Google Scholar
  4. 4.
    Sconzo, G., A.M. Pirrone, V. Mutolo and G. Giudice. Synthesis of ribosomal RNA during sea urchin development. III. Evidence for an activation of transcription. Biochim. Biophys. Acta (1970) 199 435–440.Google Scholar
  5. 5.
    Sconzo, G. and G. Giudice. Synthesis of ribosomal RNA in sea urchin embryos. V. Further evidence for an activation following the hatching blastula stage. Biochim. Biophys. Acta (1971) 254 447–451.Google Scholar
  6. 6.
    Sconzo, G., A. Bono, I. Albanese, and G. Giudice. Studies on sea urchin oocytes: II. Synthesis of RNA during oogenesis. Exptl. Cell Res. (1972) 72 95–100.PubMedCrossRefGoogle Scholar
  7. 7.
    Cognetti, G., G. Spinelli and A. Vivoli. Synthesis of Histones during sea urchin oogenesis. Biochim. Biophys. Acta (1974) 349 447–455.Google Scholar
  8. 8.
    Cognetti, G., I. Di Liegro and F. Cavarretta. Studies of protein synthesis during sea urchin oogenesis. II. Synthesis of tubulin. Cell Differ. (1977) 6 159–165.PubMedCrossRefGoogle Scholar
  9. 9.
    Matsumoto, L., H. Kasamatsu, L. Piko and J. Vinograd. Mitochondrial DNA replication in sea urchin oocytes. J. Cell Biol. (1974) 63 146–159.Google Scholar
  10. 10.
    Harvey, E.B. “The American Arbacia and Other Sea Urchins” (1966) Princeton Univ. Press., Princeton, N.J.Google Scholar
  11. 11.
    Rinaldi, A.M., A. Storace, A. Arzone and V. Mutolo. Cell nucleus negatively controls mitochondrial RNA synthesis in early sea urchin development. Cell Biol. Intern. Rep. (1977) 1 249–254.Google Scholar
  12. 12.
    Rinaldi, A.M., G. De Leo, A. Arzone, I. Salcher, A. Storace and V. Mutolo, Biochemical and electron microscopic evidence that cell nucleus negatively controls mitochondria) genomic activity in early sea urchin development. Submitted for publication.Google Scholar
  13. 13.
    Giudice, G. Restitution of whole larvae from disaggregated cells of sea urchin embryos. Dev. Biol (1962) 5 402–411.CrossRefGoogle Scholar
  14. 14.
    Millonig, G. and G. Giudice. Electron microscopic study of the reaggregation of cells dissociated from sea urchin embryos. Dev. Biol. (1967) 15 91–101.Google Scholar
  15. 15.
    Giudice, G., V. Mutolo, G. Donatuti and M. Bosco. Reaggregation of mixtures of cells from different developmental stages of sea urchin embryos. Exptl. Cell Res. (1968) 54 279–281.Google Scholar
  16. 16.
    Giudice, G. and V. Mutolo. Reaggregation of dissociated cells of sea urchin embryos. Advances Morphogen. (1970) 8 115–158.Google Scholar
  17. 17.
    Giudice, G. Aggregation of cells isolated from vegetalized and animalized sea urchin embryos. Experientia (1963) 19 83–86.PubMedCrossRefGoogle Scholar
  18. 18.
    Giudice, G. The mechanism of aggregation of embryonic sea urchin cells a biochemical approach. Dev. Biol. (1965) 12 233–247.PubMedCrossRefGoogle Scholar
  19. 19.
    Vittorelli, M.L., G. Cannizzaro and G. Giudice. Trypsin treatment of cells dissociated from sea urchin embryos elicits DNA synthesis. Cell Differ. (1973) 2 279–284.PubMedCrossRefGoogle Scholar
  20. 20.
    Matranga, V., C. Giarrusso, V. Vasile and M.L. Vittorelli. Trypsin treatment which elicits DNA synthesis, removes a high a high molecular weight glycoprotein from the plasma membrane of sea urchin embryonic cells. Cell Biol. Intern. Rep. (1978) ` 147–155.Google Scholar
  21. 21.
    Noll, H. and Vittorelli, M.L., manuscript in preparation.Google Scholar

Copyright information

© Plenum Press, New York 1979

Authors and Affiliations

  • A. Arzone
    • 1
  • V. Matranga
    • 1
  • G. Giudice
    • 1
  • V. Mutolo
    • 1
  • H. Noll
    • 1
  • A. M. Rinaldi
    • 1
  • I. Salcher
    • 1
  • M. L. Vittorelli
    • 1
  1. 1.Institute of Comparative AnatomyThe University of PalermoPalermoItaly

Personalised recommendations