Enzymatic Modifications of Nuclear DNA in the Early Embryonic Development of the Sea Urchin

  • L. Tosi
  • E. Scarano


The encoding in DNA of the structure of a protein and the basic control mechanisms of protein synthesis in prokaryotes by repressor and activator proteins are well understood. In principle we can understand how, by spontaneous assemblage of components of the lower level, viruses, subcellular organelles, bacterial cells and even the cells of monocellular eukaryotes arise.


Enzymatic Modification Early Embryonic Development Blastula Stage Cell Determination Centrosome Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Scarano, E. Enzymatic modifications of DNA and embryonic differentiation. Ann. Embryol. Morphogen. (1969) Suppl. 1 51–61.Google Scholar
  2. 2.
    Scarano, E. The control of gene function in cell differentiation and in embryogenesis. Adv. Cytopharmacol. (1971) 1 13–24.PubMedGoogle Scholar
  3. 3.
    Scarano, E., L. Tosi and A. Granieri. Enzymatic modifications of DNA: A model for the molecular basis of cell differentiation. In F. Salvatore, E. Borek, V. Zappia, H.G. Williams-Ashman and F. Schlenk, The Biochemistry of Adenosylmethionine, Columbia University Press, New York (1977) pp. 369–382.Google Scholar
  4. 4.
    Mintz, B. Gene control of mammalian differentiation. Ann. Rev. Genet. (1974) 8 411–470.Google Scholar
  5. 5.
    Gurdon, J.B. Control of gene expression in animal development. Harvard University Press (1974).Google Scholar
  6. 6.
    Scarano, E., M. Iaccarino, P. Grippo and E. Parisi. The heterogeneity of thymine methyl group origin in DNA pyrimidine isostichs of developing sea urchin embryos. Proc. Natl. Acad. Sci. USA (1967) 57 1394–1400.PubMedCrossRefGoogle Scholar
  7. 7.
    Grippo, P., E. Parisi, C. Carestia and E. Scarano. A novel origin of some deoxyribonucleic acid thymine and its non-random distribution. Biochemistry (1970) 9 2605–2609.PubMedCrossRefGoogle Scholar
  8. 8.
    Tosi, L., A. Granieri and E. Scarano. Enzymatic DNA modifications in isolated nuclei from developing sea urchin embryos. Exptl. cell Res. (1972) 72 257–264.PubMedCrossRefGoogle Scholar
  9. 9.
    Tosi, L. and E. Scarano. Effect of trypsin on DNA methylation in isolated nuclei from developing sea urchin embryos. Biochem. Biophys. Res. Commun. (1973) 55 470–476.Google Scholar
  10. 10.
    Wyatt, G.R. The purine and pyrimidine composition of deoxypentose nucleic acids. Biochem. J. (1951) 48 584–590.PubMedGoogle Scholar
  11. 11.
    Vanyushin, B.F., S.G. Tkacheva and A.N. Belozersky. Rare bases in animal DNA. Nature (1970) 225 948-949.Google Scholar
  12. 12.
    Arber, W. DNA modification and restriction. Progr. Nucleic Acids Res. & Mol. Biol. (1974) 14 1-37.Google Scholar
  13. 13.
    Razin, A., D. Goren and J. Friedman. Studies on the biological role of DNA methylation: Inhibition of methylation and maturation of the bacteriophage OX 174 by nicotinamide. Nucleic Acids Res. (1975) 2 1967–1974.PubMedCrossRefGoogle Scholar
  14. 14.
    Riggs, A.D. X inactivation, differentiation and DNA methylation. Cytogenet. Cell Genet. (1975) 14 9–25.Google Scholar
  15. 15.
    Holliday, R. and J.E. Pugh. DNA modification mechanisms and gene activity during development. Science (1975) 187 226–232.PubMedCrossRefGoogle Scholar
  16. 16.
    Sager, R. and R. Kitchin. Selective silencing of eukaryotic DNA. Science (1975) 189 426–433.Google Scholar
  17. 17.
    Grippo, P., M. Iaccarino, E. Parisi and E. Scarano. Methylation of DNA in developing sea urchin embryos. J. Mol. Biol. (1968) 36 195–208.CrossRefGoogle Scholar
  18. 18.
    Razin, A. and H. Cedar. Distribution of 5-methylcytosine in chromatin. Proc. Natl. Acad. Sci. USA (1977) 74 2725–2728.CrossRefGoogle Scholar
  19. 19.
    Scarano, E. and L. Tosi. Differential DNA methylation by isolated nuclei of developing sea urchin embryos. 10th International Congress of Biochemistry. Hamburg (1976). Abstract 11–8–384, p. 533.Google Scholar
  20. 20.
    H8rstadius, S. Experimental embryology of echinoderms. Clarendon, Oxf. (1973).Google Scholar
  21. 21.
    Scarano, E., M. Iaccarino, P. Grippo, and D. Winckelmans. On methylation of DNA during development of the sea urchin embryo. J. Mol. Biol. (1965) 14 603–607.PubMedCrossRefGoogle Scholar
  22. 22.
    Sneider, T.W. and Van R. Potter. Methylation of mammalian DNA: Studies on Novikoff hepatoma cells on tissue culture. J. Mol. Biol. (1969) 42 271–284.PubMedCrossRefGoogle Scholar
  23. 23.
    Sneider, T.W. On the source of “Mynor Thymine” in DNA from a Novikoff rat hepatoma cell line. J. Mol. Biol. (1973) 79 731-734.Google Scholar
  24. 24.
    Rossi, M., G. Geraci and E. Scarano. Deoxycytidylate aminohydrolase. III. Modifications of the substrate sites caused by allosteric effectors. Biochemistry (1967) 6 3640–3645.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1979

Authors and Affiliations

  • L. Tosi
    • 1
  • E. Scarano
    • 1
  1. 1.Stazione Zoologica and Laboratory of Molecular EmbryologyCNRNaplesItaly

Personalised recommendations