Some Properties of Two Proteins Involved in Membrane Transport

  • G. L. Sottocasa
  • E. Panfili
  • G. Sandri
  • G. F. Liut
  • C. Tiribelli
  • M. Luciani
  • G. C. Lunazzi


One of the most intensively investigated fields of biological research nowadays is membrane structure and function.The reason for this great interest resides in the great number of biological functions connected with these microscopic structures. It is not appropriate to recall here all the concepts which have developed in this area since some decades (see for a recent review 1). The most generally accepted structure today is that illustrated by Singer (2) and referred to as fluid-mosaic model. In the model phospholipids are arranged in a bilayer system,with the hydrophobic tails in close association to each other,whereas the polar heads are facing the water phase on both sides of the membrane. Associated to the phospholipid bilayer are the protein molecules which are to be classified in peripheral and integral ones. The type of interaction of the two classes of proteins with phospholipids are totally different. In the former case protein are bound to the surface via polar groups. Changes in ionic strength and/or chelation of divalent cations is often sufficient to cause the peripheral proteins to be released. On the contrary,integral proteins are firmly bound to the lipid bilayer and hydrophobic interactions contribute greatly to the stabilization of the structure. Obviously depending on the physical properties of the surface of the protein three possibilities are open: a) a protein molecule is completely embedded in the lipid bilayer; b) a protein molecule is only partially embedded in hydrophobic core of the membrane and faces one of the two surfaces with a hydrophilic tail and c) a protein molecule may be so arranged that only the intermediate portion of it shows a hydrophobic outer surface and the protein may be visualized as a transmembrane component.


Membrane Transport Calcium Transport Mitochondrial Calcium Liver Plasma Membrane Antibody Preparation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cell Membranes:Biochemistry, Cell Biology and Pathology“, In G.Weismann and R.Klaiborne, HP Publishing Co., Inc.N.Y. (1975).Google Scholar
  2. 2.
    Singer,S.J.“ Architecture and Topography of Biologic Membranes”, Ibidem, pp.35–44.Google Scholar
  3. 3.
    Sottocasa,G.L., G.Sandri, E.Panfili and B. de Bernard. A glycoprotein located in the intermembrane space of rat liver mitochondria. FEBS Lett. (1971) 17 100–105.PubMedCrossRefGoogle Scholar
  4. 4.
    Sottocasa,G.L., G.Sandri, E.Panfili and B. de Bernard. “Glycoprotein in the mitochondrial compartments of rat liver”, In G.F.Azzone, E.Carafoli, A.L.Lehninger, E.Quagliariello and N.Siliprandi, Biochemistry and Biophysics of Mitochondrial Membranes, Academic Press N.Y. (1972) pp. 431–443.Google Scholar
  5. 5.
    Sottocasa,G.L., G.Sandri, E.Panfili, B. de Bernard, P.Gazzotti, F.D.Vasington and E.Carafoli. Isolation of a soluble calcium binding glycoprotein from ox liver mitochondria. Biochem.Biophys. Res.Commun. (1972) 47 808–813.CrossRefGoogle Scholar
  6. 6.
    Carafoli,E., P.Gazzotti, C.Saltini, C.S.Rossi, G.L.Sottocasa, G.Sandri, E.Panfili and B. de Bernard. “Further studies on the mitochondrial calcium -binding glycoprotein”, In G.F.Azzone, L.Ernster, S.Papa, E.Quagliariello and N.Siliprandi, Mechanisms in Bioenergetics, Academic Press, N.Y. (1973) pp. 293–307.Google Scholar
  7. 7.
    Panfili,E., G.Sandri and G.L.Sottocasa. Some properties of an isolated glycoprotein possibly related to calcium transport in mitochondria. Acta Vitamin. et Enzymol. (1974) 28 323–330.Google Scholar
  8. 8.
    Sandri,G., E.Panfili and G.L.Sottocasa. The calcium binding glycoprotein and mitochondrial calcium movements. Biochem. Biophys.Res.Commun. (1976) 68 1272–1279.PubMedCrossRefGoogle Scholar
  9. 9.
    Panfili,E., G.Sandri, G.L.Sottocasa, G.Lunazzi, G.Liut and G. Graziosi. Specific inhibition of mitochondrial calcium transport by antibodies directed to the calcium binding glycoprotein. (1976) 264 185–186.Google Scholar
  10. 10.
    Prestipino,G., D.Ceccarelli, F.Conti and E.Carafoli. Inter- actions of a mitochondrial calcium binding glycoprotein with lipid bilayer membranes. FEBS Lett. (1974) 45 99–103.PubMedCrossRefGoogle Scholar
  11. 11.
    Sandri,G., E.Panfili and G.L.Sottocasa. Specific association of the calcium binding glycoprotein to inner mitochondrial membrane. Bull.MOl.Biol.Med. (1978) submitted for publication.Google Scholar
  12. 12.
    Sottocasa,G.L., E.Panfili and G.Sandri. The problem of mito- chondrial calcium transport. Bull.Mol.Biol.Med. (1977) 21–28.Google Scholar
  13. 13.
    Levy,A.J., Z.Gatmaitan and I.M.Arias. Two hepatic cytoplasmic protein fractions,Y and Z, and their possible role in hepatic uptake of bilirubin, sulfobromophtalein, and other anions. J.Clin.Invest. (1969) 48 2156–2167.CrossRefGoogle Scholar
  14. 14.
    Frezza,M., C.Tiribelli, E.Panfili and G.Sandri. Evidence for the existence of a carrier for bromosulphonphthalein in the liver cell plasma membrane. FEBS Lett. (1974) 38 125–128.CrossRefGoogle Scholar
  15. 15.
    Tiribelli,C., E.Panfili, G.Sandri, M.Frezza and G.L.Sottocasa. “Liver bromosulphonphthalein transport as a carrier mediated process”, In Deseases of the Liver and Biliary Tract. C.M.Leevy. S.Karger A.G., Basel (1976) pp. 55–59.Google Scholar
  16. 16.
    Tiribelli,C., G.C.Lunazzi, M.Luciani, E.Panfili, B.Gazzin, G.F. Liut, G.Sandri and G.L.Sottocasa. Isolation of a sulphobromophthalein binding protein from hepatocyte plasma membrane. Biochem. Biophys. Acta (1978) 532 105–112.Google Scholar
  17. 17.
    Porter,R.R. The hydrolysis of rabbit y-globulin and antibodies with crystallin papain. Biochem. J. (1959) 73 119–126.PubMedGoogle Scholar
  18. 18.
    Tiribelli,C., G.C.Lunazzi, M.Luciani, B.Gazzin and G.L.Sotto- casa. Bilitranslocase: a protein from rat liver plasma membrane involved in hepatic bilirubin uptake. J. Clin. Invest. (1978) submitted for pubblication.Google Scholar
  19. 19.
    Schnaitman,C. and J.W.Greenawalt. Enzymatic properties of the inner and outer membranes of rat liver mitochondria. J. Cell. Biol. (1968) 38 158–175.CrossRefGoogle Scholar
  20. 20.
    Estabrook,R.W. “Mitochondrial respiratory control and the pola- rographic measurement of ADP:0 ratios”. In R.W.Estabrook and M.E.Pullman, Methods in Enzymology, Academic Press, (1967) 10 pp. 41–47.Google Scholar
  21. 21.
    Weber,K. and N.Osborne. The reliability of molecular weight determinations by dodecylsulphate-polyacrylamide gel electrophoresis. J. Biol. Chem. (1969) 244 4406–4412.PubMedGoogle Scholar
  22. 22.
    Jendrassik,L. and P.Grof. Vereinfachte photometrische Methode zur Bestimmung des Blutbilirubins. Biochem. Zeit. (1938) 297 81–89.Google Scholar

Copyright information

© Plenum Press, New York 1979

Authors and Affiliations

  • G. L. Sottocasa
    • 1
  • E. Panfili
    • 1
  • G. Sandri
    • 1
  • G. F. Liut
    • 1
  • C. Tiribelli
    • 2
  • M. Luciani
    • 1
  • G. C. Lunazzi
    • 1
  1. 1.Istituto di Chimica BiologicaUniversity of TriesteItaly
  2. 2.Istituto di Patologia MedicaUniversity of TriesteItaly

Personalised recommendations