Electrophysiological Assessments in Mentally Retarded Individuals: From Brainstem to Cortex

  • G. C. Galbraith
  • N. Squires
  • D. Altair
  • J. B. Gliddon
Part of the The Downstate Series of Research in Psychiatry and Psychology book series (DSRPP, volume 2)


The problems of mental retardation are complex and can be conceptualized in a number of ways. For example, one can adopt a biomedical model which assumes that basic alterations in the nervous system are the primary cause of mental retardation. Cer tainly, there are numerous genetic and organic insults to the nervous system that support a biomedical model. In contrast, one may consider mental retardation in socio-cultural terms, with emphases being placed upon developmental impairment in infancy and pre-school years, the deleterious effects of social labeling, poor social-vocational adjustment, etc. Yet, in view of growing evidence that environmental deprivation can markedly impair the anatomical, biochemical and functional development of the nervous system (e.g., Greenough, 1975), it is likely that even individuals diagnosed as mentally retarded on socio-cultural grounds may show patterns of neural activity that deviate from normal. Such abnormal neural activity will be manifest to some degree, it is assumed, in patterns of electroencephalographic activity.


Mental Retardation Auditory Brainstem Response Cochlear Nucleus Brainstem Auditory Evoke Response Unexpected Stimulus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Achor, L. J. Field analysis of auditory brainstem responses. Neurosci. Abstr., 1976, 2 ,12.Google Scholar
  2. Benda, C. E. Down’s syndrome. New York: Grune & Stratton, 1969.Google Scholar
  3. Bigum, H. B., Dustman, R. E. & Beck, E. C. Visual and somato-sensory evoked responses from mongoloid and normal children. Electroenceph. clin. Neurophysiol., 1970, 8, 576–585.CrossRefGoogle Scholar
  4. Bower, A. C. Autonomic correlates of anticipation and feedback in retarded adolescents. J. merit. Defic. Res., 1974, 18, 31–39.Google Scholar
  5. Brown, W. S. Evoked potential correlates of information delivery and responsiveness in mongoloid and normal children. Unpub lished Master’s thesis, Univ. So. Calif., 1968.Google Scholar
  6. Buchwald, J. S. & Huang, C. M. Far-field acoustic response: origins in the cat. Science, 1975, 189, 382–384.PubMedCrossRefGoogle Scholar
  7. Courchesne, E. Event-related brain potentials: Comparison between children and adults. Science. 1977, 197, 589–592.PubMedCrossRefGoogle Scholar
  8. Cragg, B. G. The density of synapses and neurons in normal, mentally defective and ageing human brains. Brain, 1975, 98, 81–90.PubMedCrossRefGoogle Scholar
  9. Crome, L., Cowie, V. & Slater, E. A statistical note on cerebellar and brain-stem weight in mongolism. J. ment. Defic. Res., 1966, 10, 69–72.Google Scholar
  10. Deich, R. Reproduction and recognition as indices of perceptual impairment. Amer. J. ment. Defic., 1968, 73, 9–12.PubMedGoogle Scholar
  11. Don, M., Allen, A. R. & Starr, A. Effect of click rate on the latency of auditory brain stem responses in humans. Arch. Otol. Rhin. and Laryngol., 1977, 86, 186–195.Google Scholar
  12. Ford., J., Roth, T. & Kopell, B. Auditory evoked potentials to unpredictable shifts in pitch. Psychophysiol., 1976, 13, 32–39 (a).CrossRefGoogle Scholar
  13. Ford, J., Roth, W. & Kopell, B. Attention effects on auditory evoked potentials to infrequent events. Biological Psy., 1976, 4, 65–77 (b).CrossRefGoogle Scholar
  14. Gliddon, J. B., Galbraith, G. C. & Kuester, D. Effects of stimulation rate on short latency far-field responses in the mentally retarded. Annual meeting of the American Association on Mental Deficiency, Chicago, May 30-June 2, 1976.Google Scholar
  15. Gliddon, J. B., Busk, J. & Galbraith, G. C. Visual evoked responses as a function of light intensity in Down’s syndrome and nonretarded subjects. Psychophysiol., 1975, 12, 416–422.CrossRefGoogle Scholar
  16. Goodin, D. S., Squires, K. C., Henderson, B. H. & Starr, A. Age-related variations in evoked potentials to auditory stimuli in normal human subjects. Electroenceph. clin. Neurophysiol., in press.Google Scholar
  17. Gosling, H. & Jenness, D. Temporal variables in simple reaction time of mentally retarded boys. Amer. J. merit, Defic., 1974, 79, 214–224.Google Scholar
  18. Gottfied, A. W. Intellectual consequences of perinatal anoxia. Psychol. Bull., 1973, 10, 231–242.CrossRefGoogle Scholar
  19. Greenough, W. T. Experiential modification of the developing brain. Amer. Sci., 1975, 63, 37–46.PubMedGoogle Scholar
  20. Hall, J. G. On the neuropathological changes in the central nervous system following neonatal asphyxia. With special reference to the auditory system. Acta Oto-Laryngol. Suppl., 1963, 188, 331–338.Google Scholar
  21. Hall, J. G. The cochlea and cochlear nuclei in neonatal asphyxia. A histological study. Acta Oto-Laryngol. Suppl., 1964, 194. 6–93.Google Scholar
  22. Hecox, K. Electrophysiological correlates of human auditory develop ment. In: Cohen & Salapater (Eds.), Infant Perception: From Sensation to Cognition, Vol. II, New York: Academic Press, 1975, pp. 151–191.Google Scholar
  23. Hecox, K. & Galambos, R. Brainstem auditory evoked responses in human infants and adults. Arch. Otolaryngol., 1974, 99, 30–33.PubMedCrossRefGoogle Scholar
  24. Huang, C.-M. and Buchwald, J. S. Interpretation of the vertex shortlatency acoustic response: A study of single neurons in the brainstem. Brain Res, (in press).Google Scholar
  25. Hyde, M. L., Stephens, S. D. G. & Thornton, A. R. D. Stimulus repetition rate and the early brainstem responses. Brit. J. Audiol., 1976, 100, 41–50.CrossRefGoogle Scholar
  26. Jewett, D. L. Volume conducted potentials in response to auditory stimuli as detected by averaging in the cat. Electroenceph. Clin. Neurophvsiol.. 1970, 28, 609–618.Google Scholar
  27. Jewett, D. L. & Williston, J. S. Auditory evoked far fields averaged from the scalp of humans. Brain, 1971,10, 681–696.CrossRefGoogle Scholar
  28. Karrer, R. & Ivins, J. Steady potentials accompanying perception and response in mentally retarded and normal children. In: Karrer, R. (Ed.), Developmental Psychobiology of Mental Retardation. Springfield: Thomas, 1976, pp. 361–417.Google Scholar
  29. Kirby, N. H., Nettlebeck, T. & Tiggeman, M. Reaction time in retarded and non-retarded young adults: sequential effects and response organization. Amer. J. ment. Defic., 1977, 81, 492–498.PubMedGoogle Scholar
  30. Kutas, M., McCarthy, G. & Donchin, E. Augmenting mental chronometry: the P300 as a measure of stimulus evaluation time. Science, 1977, 197, 792–795.PubMedCrossRefGoogle Scholar
  31. Lev, A. & Sohmer, H. Sources of averaged neural responses recorded in animal and human subjects during cochlear audiometry (electrocochleogram). Arch, klin. Exp. Ohren Nasen Kehl kopfheilkd., 1972, 201, 79–90.CrossRefGoogle Scholar
  32. Lindsley, D. B. Mental retardation: Historical and psychophysiologcal perspective. In: Karrer, R. (Ed.), Developmental Psycho-physiology of Mental Retardation, Springfield: Thomas, 1976 pp. 3–38.Google Scholar
  33. Lloyd, L. L. & Reid, M. J. The incidence of hearing impairment in an institutionalized mentally retarded population. Amer. J. ment. Defic, 1967, 71, 746–763.Google Scholar
  34. Marin-Padilla, M. Structural abnormalities of the cerebral cortex in human chromosomal aberrations: A Golgi study. Brain Res., 1972, 44, 625–629.PubMedCrossRefGoogle Scholar
  35. Miranda, S. B. & Fantz, R. L. Recognition memory in Down’s syndrome and normal infants. Child Develop., 1974, 45, 651–660.PubMedCrossRefGoogle Scholar
  36. Niswander, P. & Kelly, L. Comparison of speech discrimination in nonretarded and retarded listeners. Amer. J. ment. Defic., 1976, 80, 217–222.Google Scholar
  37. Picton, T. W., Hillyard, S. A. & Galambos, R. Cortical evoked responses to omitted stimuli. In: Livanov, M. N. (Ed.), Major Problems of Brain Electrophysiology, USSR Acadamey of Sciences, 1974, pp. 302–311.Google Scholar
  38. Pratt, H. & Sohmer, H. Intensity and rate functions of cochlear and brainstem evoked responses to click stimuli in man. Arch. Oto-Rhino-Laryng., 1976, 212, 85–92.CrossRefGoogle Scholar
  39. Purpura, D. P. Dendritic spine “dysgenesis” and mental retardation. Science, 1974, 186, 1126–1128.PubMedCrossRefGoogle Scholar
  40. Ritter, W., Simson, R. & Vaughan, H. G. Association cortex poten tials and reaction time in auditory discrimination. Electro-enceph. clin. Neurophysiol., 1972, 33, 547–555.CrossRefGoogle Scholar
  41. Ruchkin, D. & Sutton, S. Latency characteristics and trial-by-trial variation of emitted potentials. In: Desmedt, J. E. (Ed.), Cerebral Evoked Potentials in Man, Brussels, in press.Google Scholar
  42. Shelburne, S. A. Visual evoked responses to language stimuli in normal children. Electroenceph. clin. Neurophysiol., 1973, 34, 135–143.PubMedCrossRefGoogle Scholar
  43. Silverman, W. Utilization of redundant information by EMR and non-retarded adults. Amer. J. ment. Defic, 1975, 80, 197–201.PubMedGoogle Scholar
  44. Simson, R., Vaughan, H. G. & Ritter, W. The scalp topography of potentials associated with missing visual or auditory stimuli. Electroenceph. clin. Neurophysiol., 1976, 40, 33–42.PubMedCrossRefGoogle Scholar
  45. Simson, R., Vaughan, H. G. & Ritter, W. The scalp topography of potentials in auditory and visual discrimination tasks. Electro encephalog. clin. Neurophysiol. 1977, 42, 528–535.CrossRefGoogle Scholar
  46. Sohmer, H. & Feinmesser, M. Routine use of electrocochleography (cochlear audiometry) on human subjects. Audiol., 1973, 12, 167–173.CrossRefGoogle Scholar
  47. Spitz, H. H. The channel capacity of educable mental retardates. In: Routh, D. K. (Ed.), The Experimental Psychology of Mental Retardation, Chicago: Aldine, 1973, pp. 133–156.Google Scholar
  48. Squires, K. C., Wickens, C., Squires, N. K. & Donchin E. The effect of stimulus sequence on the waveform of the cortical event-related potential. Science, 1976, 193, 1142–1146.PubMedCrossRefGoogle Scholar
  49. Squires, N. K., Donchin, E., Squires, K. C. and Grossberg, S. Bisensory stimulation: Inferring decision-related processes from the P300 component. J. exp. Psychol.:HPP, 1977, 3, 299–315.CrossRefGoogle Scholar
  50. Squires, N., Squires, K. C. & Hillyard, S. Two varieties of long-latency positive waves evoked by unpredictable auditory stim uli in man. Electroenceph. clin. Neurophysio., 1975, 38, 387–401.CrossRefGoogle Scholar
  51. Squires, N. K., Squi res, K. C. & Hillyard, S. On the functional equivalence of signal-present, signal-absent, and thresholddetect P3. In: Otto, D. (Ed.), New Perspectives in Event- related Potential (ERP) Research, Washington, D. C.: U. S. Government Printing Office, in press.Google Scholar
  52. Starr, A. Auditory brainstem responses in brain death. Brain, 1976, 99, 1543–1554.CrossRefGoogle Scholar
  53. Starr, A. & Achor, J. Auditory brain stem responses in neurological disease. Arch. Neurol., 1975, 32, 761–768.PubMedCrossRefGoogle Scholar
  54. Stockard, J. J. & Rossiter, V. S. Clinical and pathologic correlates of brain stem auditory response abnormalities. Neurol., 1977, 27, 316–325.CrossRefGoogle Scholar
  55. Sutton, S., Braren, M., Zubin, J. & John, E. R. Evoked potential correlates of stimulus uncertainty. Science, 1965, 150, 1187– 1188.PubMedCrossRefGoogle Scholar
  56. Tueting, P., Sutton, S. & Zubin, J. Quantitative evoked potential correlates of the probability of events. Psychophysiol., 1970, 7, 385–394.CrossRefGoogle Scholar
  57. Weiner, B. J. Statistical Principles in Experimental Design. New York: McGraw-Hill, 1962.CrossRefGoogle Scholar
  58. Wilhelm, H. & Lovaas, O. I. Stimulus overselectivity: A common feature in autism and mental retardation. Amer. J. ment. Defic. 1976, 81, 26–31.PubMedGoogle Scholar
  59. Zeaman, D. One programmatic approach to retardation. In: Rauth, D. K. (Ed.), The Experimental Psychology of Mental Retardation. Chicago: Aldine, 1973, pp. 78–132.Google Scholar

Copyright information

© Plenum Press, New York 1979

Authors and Affiliations

  • G. C. Galbraith
    • 1
  • N. Squires
    • 1
  • D. Altair
    • 1
  • J. B. Gliddon
    • 1
  1. 1.Neuropsychiatric Institute, Pacific State Hospital Research GroupUniversity of CaliforniaPomonaUSA

Personalised recommendations