Neurophysiological Correlates of Central Masking

  • M. L. Lester
  • M. J. Kitzman
  • B. Z. Karmel
  • G. J. Crowe
  • Vincent Giambalvo
  • Robert D. Sidman
Part of the The Downstate Series of Research in Psychiatry and Psychology book series (DSRPP, volume 2)


Visual backward masking is an experimental paradigm used to study information processing in the visual system (Kahneman, 1968). Using this paradigm, minor changes in the temporal intervals between two tachistoscopically presented stimuli produce major changes in the accuracy of perceiving the first (or target) stimulus. In dichoptic masking the target stimulus is presented to one eye and a contoured stimulus (or mask) is presented to the other eye. In monoptic mask ing the target and mask stimuli are presented to the same eye. Monoptic masking is considered to be primarily related to peripheral interactions, while dichoptic masking, because is involves integration beyond the optic chiasm, is considered to be more centrally mediated.


Stimulus Onset Asynchrony Target Onset Evoke Potential Voltage Distribution Mask Stimulus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Averbach, E., and Coriell, A. S. Short-term memory in vision.Bell System Technical Journal, 1961, 40, 309–328.Google Scholar
  2. Bachmann, T. and Allik, J. Integration and interruption in the masking of form by form.Perception, 1976, 5, 79–97.PubMedCrossRefGoogle Scholar
  3. Bourna, H. Visual recognition of isolated lower-case letters.Vision Research, 1971, 11, 459–474.CrossRefGoogle Scholar
  4. Brazier, M. A. B. The electrical fields at the surface of the head during sleep.Electroencephalogy and Clinical Neurophysiology, 1949, 1, 195–204.Google Scholar
  5. Breitmeyer, B. and Ganz, L. Implications of Sustained and Transient Channels for Theories of Visual Pattern Masking, Saccadic Supression, and Information Processing.Psychological Review, 1976, 83, 1–35.PubMedCrossRefGoogle Scholar
  6. Brody, D. A., Terry, F. H., and Ideker, R.E. Eccentric dipole in a spherical medium; generalized expression for surface potentials.IEEE Transactions on Biomedical Engineering, 1973,BME-20, 141–143.PubMedCrossRefGoogle Scholar
  7. Coren, S. and Komada, M. Eye Movement Control in Voluntary Nystagmus.American Journal of Ophthalmology, 1972, 74, 1161–1165.PubMedGoogle Scholar
  8. Ditchburn, R. W.Eye-Movement and Visual Perception. Oxford: Clarendon Press, 1973.Google Scholar
  9. Donchin, E. Data analysis techniques in average evoked potential research, in:Average evoked potentials: Methods, results and evaluations, E. Conchin and D. B. Lindsley (Eds.)t Washington, D. C., U.S. Government Printing Office, 1969, NASA SP-191, 199–236.CrossRefGoogle Scholar
  10. Donchin, E., Kubovy, M., Kutes, M., Johnson, R., and Herning, R. I. Graded changes in evoked response (P300) amplitude as a function of cognitive activity.Perceptionand Psychophysics, 1973,14324–419.CrossRefGoogle Scholar
  11. Erdelyi, M. H. and Blumenthal, D. G. Cognitive masking in rapid sequential processing: The effect of an emotional picture on preceding and succeeding pictures.Memory and Cognition, 1973, 1, 201–204.CrossRefGoogle Scholar
  12. Eriksen, C. W. and Collins, J. F. Visual perceptual rate under two conditions of search.Journal of Experimental Psychology, 1969, 80, 489–492.PubMedCrossRefGoogle Scholar
  13. Flom, C., Heath, C. G. and Takahashi, E. Contour interaction and visual resolution: Contralateral effects.Science, 1963,142, 979–980.Google Scholar
  14. Fowler, C. A. and Turvey, M. T. Skill acquisition: An event approach with special reference to searching for the optimum of a function of several variables, in:Information processing in motor control and learning, G. Stelmach (Ed.), New York: Academic Press, in press 1978.Google Scholar
  15. Gabor, D. and Nelson, C. V. Determination of the resultant dipole of the heart from measurements on the body surface.Journal of Applied Physics, 1954, 25, 413–416.CrossRefGoogle Scholar
  16. Geisler, C. D. and Gerstein, G. L. The surface EEG in relation to its sources.Electroencephalogy and Clinical Neurophysiology, 1961, 13, 927–934.CrossRefGoogle Scholar
  17. Gibson, J. J.The Senses Considered as Perceptual Systems. Boston: Houghton Mifflin Co., 1966.Google Scholar
  18. Haber, R. N. and Hershenson, M.The Psychology of Visual Perception. New York: Holt, Rinehart and Winston, Inc., 1973.Google Scholar
  19. Harter, M. R. and White, C. T. Evoked cortical responses to checker board patterns: effect of check size as a function of visual acuity.Electroencephalography_and Clinical Neurophysiology, 1970, 28, 48–54.PubMedCrossRefGoogle Scholar
  20. Henderson, C. J., Butler, S. R. and Glass, A. The localization of equivalent dipoles of EEG sources by the application of electrical field theory.Electroencephalogy and Clinical Neurophys iology, 1975, 39, 117–130.CrossRefGoogle Scholar
  21. John, E. R.Functional Neuroscience Volume 2 Neurometrics:Clinical Applications of Quantitative Electrophysiology. John Wiley & Sons, New York, 1977.Google Scholar
  22. Kahneman, D. Method, findings, and theory in studies of visual masking.Psychological Bulletin, 1968, 7£, 404–425.CrossRefGoogle Scholar
  23. Karmel, B. Z., Hoffmann, R. F. and Fegy, M. J. Processing of contour information by human infants evidenced by pattern-dependent evoked potentials.Child Development, 1974, 45., 39–48.PubMedCrossRefGoogle Scholar
  24. Karmel, B. Z. and Maisel, E. B. A neuronal activity model of infant visual attention, in:InfantPerception From Sensation to Cognition. Part I Basic Visual Processes. Volume I. L. B. Cohen and P. Salapatek (Eds.), New York, Academic Press, 1975, 77–131.Google Scholar
  25. Kievit, J. and Kuypers, H. G. J. M. Basal forebrain and hypothalamic connections to frontal and parietal cortex in the rhesus monkey.Science, 1975, I87, 660–662.CrossRefGoogle Scholar
  26. Kurtzberg, D. and Vaughan, H. G., Jr. Electrophysiologic observations on the visuo-motor system and visual sensorium, in:Visual Evoked Potentials in Man: New Developments, J. E. Desmedt (Ed.), London: Oxford Univ. Press, 1977.Google Scholar
  27. Lieb, J. P. and Karmel, B. Z. The processing of edge information in visual areas of the cortex as evidenced by evoked potentials.Brain Research, 1974, 76., 503–519.PubMedCrossRefGoogle Scholar
  28. Lynch, J. C., Mountcastle, V. B., Talbot, W. H. and Yin, T. C. T. Parietal lobe mechanisms for directed visual attention.Journal of Neurophysiology, 1977, 40, 362–389.PubMedGoogle Scholar
  29. Mountcastle, V. B., Lynch, J. C., Georgopoulos, A., Sakata, H., and Acuna, C. Posterior parietal association cortex of the monkey: Command functions for operations within extrapersonal space.Journal of Neurophysiology, 1975, 38, 871–908.PubMedGoogle Scholar
  30. Neisser, U.Cognition and Reality. San Francisco: W. H. Freeman & Co., 1976.Google Scholar
  31. Pandya, D. N. and Kuypers, H. G. J. M. Cortico-cortical connections in the rhesus monkey.Brain Research, 1969, 13, 13–36.PubMedCrossRefGoogle Scholar
  32. Petras, J. M. Connections of the parietal lobe.Journal of Psych iatric Research, 1971, 8, 189–201.CrossRefGoogle Scholar
  33. Regan, D.Evoked Potentials in Psychology, Sensory Physiology and Clinical Medicine, John Wiley & Sons, New York, 1972.CrossRefGoogle Scholar
  34. Rush, S. and Driscoll, D. A. Current distribution in the brain from surface electrodes.Anesthesia and Analgesia.Current Researches, 1968, 47, 717–723.Google Scholar
  35. Rush, S. and Driscoll, D. A. EEG electrode sensitivity--an application of reciprocity.IEEE Transactions on Biomedical Engineering, 1969,BME-16, 15–22.PubMedCrossRefGoogle Scholar
  36. Schiller, P. H. Monoptic and dichoptic visual masking by patterns and flashes.Journal of Experimental Psychology, 1965,61, 193–199.CrossRefGoogle Scholar
  37. Schiller, P. H. and Wiener, M. Monoptic and dichoptic visual masking.Journal of Experimental Psychology. 1963,66, 386–393.PubMedCrossRefGoogle Scholar
  38. Schneider, M. R. A multistage process for computing virtual dipolarGoogle Scholar
  39. sources of EEG discharges from surface information.IEEE Transactions on Biomedical Engineering, 1972,BME-19, 1–12.Google Scholar
  40. Sidman, R. D., Giambalvo, V., Allison, T. and Bergey, P. A dipole localization method for determination of sources of human cer ebral evoked potentials. 31st annual meeting of the American EEG Society, Miami, Florida, June 22–24, 1977.Google Scholar
  41. Singer, W. and Bedworth, N. Correlation between the effects of brain stem stimulation and saccadic eye movements on transmission in the cat lateral geniculate nucleus.Brain Research, 1974, 72, 185–202.PubMedCrossRefGoogle Scholar
  42. Smith, D. B., Lell, M. E., Sidman, R. D. and Mavor, H. Nasopharyngeal phase reversal of cerebral evoked potentials and theroetical dipole implications.Electroencephalography and Clinical Neuro physiology, 1973, 34, 654–658.CrossRefGoogle Scholar
  43. Spehlmann, R. The averaged electrical response to diffuse and to patterned light in the human.Electroencephalography and Clinical Neurophysiology, 1965, 19, 560–576.CrossRefGoogle Scholar
  44. Squires, K. C. and Donchin, E. Beyond averaging: The use of discriminant functions to recognize event related potentials elicited by single auditory stimuli.Electroencephalography and Clinical Neurophysiology, 1976, 41, 449–459.PubMedCrossRefGoogle Scholar
  45. Stark, L., Michael, J. A. and Zuber, B. L. Saccadic suppression: A Product of the saccadic anticipatory signal, in:Attention in Neurophysiology, C. R. Evans and T. B. Mulholland (Eds.), London, Butterworth & Co., 1969, 281–303.Google Scholar
  46. Tecce, J. J. Contingent negative variation (CNV) and psychological processes in man.Psychological Bulletin, 1972, 77, 73–108.PubMedCrossRefGoogle Scholar
  47. Thatcher, R. W. and John, E. R.Functional Neuroscience Volume 1:Foundations of Cognitive Processes, John Wiley & Sons, New York, 1977.Google Scholar
  48. Thatcher, R. W. and Maisel, E. B. Functional Landscapes of the brain: An Electrotopographic Perspective, in:Evoked Brain Potentials and Behavior, Henri Begleiter (Ed.), Plenum Press, New York, in press, 1978.Google Scholar
  49. Turvey, M. T. On peripheral and central processes in vision: Inferences from an information-processing analysis of masking with patterned stimuli.Psychological Review, 1973, 80, 1–52.PubMedCrossRefGoogle Scholar
  50. Vaughan, H. G., Jr. The analysis of scalp-recorded brain potentials, in:Bioelectric Recording Techniques. Part B.Electroencephalography and Human Brain Potentials, R. F. Thompson and M. M. Patterson (Eds.), Academic Press, New York, 1974, 157–207.Google Scholar
  51. Vaughan, H. G., Jr. and Silverstein, L. Metacontrast and Evoked Potentials: A Reappraisal,Science, 1968, 160, 207–208.Google Scholar
  52. Walter, W. G. Slow potential changes in the human brain associated with expectancy, decision and intention.Electroencephalography and Clinical Neurophysiology,Supplement, 1967, 26, 123–130.Google Scholar
  53. White, Carroll T. The visual evoked responses and patterned stimuli, in:Advances in Psychobiology.Volume Two, G. Newton and A. H. Riesen (Eds.), John Wiley & Sons, New York, 1974, 267–295.Google Scholar
  54. Wilson, F. N. and Bayley, R. H. The electric field of an eccentric dipole in a homogeneous spherical conducting medium.Circulation, 1950, 1, 84–92.PubMedCrossRefGoogle Scholar
  55. Wilson, M. Visual function: Pulvinar-extrastriate system, in:Handbook of Behavioral Neurobiology, Vol. 1: Sensory Integration, R. B. Masterton (Ed.), Plenum Press, New York, in press 1978.Google Scholar
  56. Wurtz, R. H. and Mohler, C. W. Selection of visual targets for the initiation of saccadic eye movements.Brain Research, 1974, 71, 209–214.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1979

Authors and Affiliations

  • M. L. Lester
    • 1
  • M. J. Kitzman
    • 1
  • B. Z. Karmel
    • 1
  • G. J. Crowe
    • 1
  • Vincent Giambalvo
    • 2
  • Robert D. Sidman
    • 3
  1. 1.Psychology DepartmentUniversity of ConnecticutUSA
  2. 2.Mathematics DepartmentUniversity of ConnecticutUSA
  3. 3.Mathematics DepartmentSouthwestern Louisiana UniversityUSA

Personalised recommendations