Advertisement

Event-related Brain Potentials: A Tool in the Study of Human Information Processing

  • Emanuel Donchin
Part of the The Downstate Series of Research in Psychiatry and Psychology book series (DSRPP, volume 2)

Abstract

A cognitive psychologist of note who is not particularly impressed with event-related potentials (ERPs) commented recently, while reviewing a grant application, that studies of the behavioral correlates of ERPs can be described as studies in which “phenomena are in search of a theory.” The intent was pejorative, but I found the statement complimentary. I was especially pleased because several years ago in a review of one of my own proposals another referee suggested that in the field of ERPs “one sees a technique futilely searching for phenomena!” We have, it would seem, made good progress in the last decade if we have found phenomena and are now searching for a theory. A detailed review of this progress is presented by Callaway, Tueting, and Koslow (in press).

Keywords

Event Related Potential P300 Amplitude P300 Component P300 Latency Clinical Neurophysiology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barlow, J. S. An electronic method for detecting evoked responses of the brain and for reproducing their average waveforms,Electroencephalography&Clinical Neurophysiology, 1957, 9, 340–343.Google Scholar
  2. Beach, L. R., Rose, R. M., Sayeki, Y., Wise, J. A., & Carter, W. B. Probability learning: Response proportions and verbal estimates.Journal of Experimental Psychology, 1970,86, 165–170.Google Scholar
  3. Becker, G. M., & McClintock, C. G. Value: Behavioral decision theory. In P. R. Farnsworth, O. McNemar, & Q. McNemar (Eds.),Annual Review of Psychology, 1967, 18, 139–287.Google Scholar
  4. Bostock, H., & Jarvis, M. J. Changes in the form of the cerebral evoked response related to the speed of simple reaction time.Electroencephalography&Clinical Neurophysiology, 1970,29, 137–145.Google Scholar
  5. Brazier, M. A. B. Evoked responses recorded from the depths of the human brain.Annals of the New York Academy of Science, 1964,112, 35–59.Google Scholar
  6. Callaway, E., Tieting, P., & Koslow, S. (Eds.),Brain Event Related Potentials in Man, Academic Press (in press).Google Scholar
  7. Caton, R. The electric current of the brain.British Medical Journal, 1875, w, 278.Google Scholar
  8. Chapman, R. M., & Bragdon, H. R. Evoked responses to numerical and non-numerical visual stimuli while problem solving.Nature, 1964,203, 1155–1157.PubMedGoogle Scholar
  9. Chesney, G. L. The effects of prior expectancy and prediction outcome on the P300 component of the human average evoked potential. Unpublished masters thesis, New Mexico State University, 1976.Google Scholar
  10. Chesney, G. L. and Donchin, E. Predictions, their confirmation, and the P300 component. In preparation.Google Scholar
  11. Ciganek, L. Excitability cycle of the visual cortex in man.Annals of the New York Academy of Science, 1964,112, 241–253.Google Scholar
  12. Clark, D. L., Butler, R. A., & Rosner, B. S. Dissociation of sensation and evoked responses by a general anesthetic in man.Journal of Comparative Physiological Psychology, 1969,68, 315–319.Google Scholar
  13. Clark, D. L., Butler, R. A., & Rosner, B. S. Are evoked responses necessary? A reply to Donchin and Sutton.Communications in Behavioral Biology, 1970,5,105–110.Google Scholar
  14. Clynes, M., & Kohn, M. The use of the Mnemotron for biological data storage, reproduction, and for an average transient computer. Abstracts of4th annual meeting of the Biophysics Society: 1960,23, Philadelphia, Pennsylvania.Google Scholar
  15. Cohen, J. Very slow brain potentials relating to expectancy: The CNV. In E. Donchin & D. B. Lindsley (Eds.),Average evoked potentials:Methods,results and evaluations. Washington, D.C.: U.S. Goverment Printing Office, 1969.Google Scholar
  16. Cruikshank, R. M. Human occipital brain potentials.Journal of Experimental Psychology, 1937, 2, 625–641.Google Scholar
  17. Davis, H. Enhancement of evoked cortical potentials in humans related to a task requiring a decision.Science, 1964,145, 182–183.PubMedGoogle Scholar
  18. Davis, H. Principles of electric response audiometry.The annals of otology,rhinology,and laryngology, 1976, Suppl . 28,85, No. 3, Part 3.Google Scholar
  19. Davis, P. A. Effects of sound stimulation of the waking human brain.Journal of Neurophysiology, 1939,2,494–499.Google Scholar
  20. Dawson, G. D. Cerebral responses to electrical stimulation of peripheral nerve in man.Journal of Neurology,Neurosurgery and psychiatry, 1947, 10, 134–140.Google Scholar
  21. Dawson, G. D. A summation technique for detecting small signals in a large irregular background.Journal of Physiology, 1951,115, 2–3.Google Scholar
  22. Dawson, G. D. A summation technique for the detection of small evoked potentials.El.ectroencephalography&Clinical Neurophysiology, 1954, 6, 65–84.Google Scholar
  23. Debecker, J., & Desmedt, J. E. Rate of intermodality switching disclosed by sensory evoked potentials averaged during signal detection tests.Journal of Physiology, 1966,185, 52–53.Google Scholar
  24. Deecke, L., Scheid, P., & Kornhuber, H. H. Distribution of readiness potential, pre-motion positivity, and motor potential of the human cerebral cortex preceding voluntary finger movements.Experimental Brain Research, 1969, 7, 158–168.Google Scholar
  25. Donchin, E. A multivariate approach to the analysis of average evoked potentials.IEEE Transactions on Bio-Medical Engineering, 1966, BME-13, 131–139.Google Scholar
  26. Donchin, E. Data analysis techniques in average evoked potential research. In E. Donchin & D. B. Lindsley (Eds.),Average evoked potentials:Methods,results and evaluations. Washington, D.C.: U.S. Goverment Printing Office, 1969.Google Scholar
  27. Donchin, E. Brain electrical correlates of pattern recognition. In G. F. Inbar (Ed.),Signal Analysis and Pattern Recognition in Biomedical Engineering. New York: John Wiley, 1975.Google Scholar
  28. Donchin, E. The relationship between P300 and the CNV (a correspondence). In W. C. McCallum & John R. Knott (Eds.),The responsive brain. Bristol: John Wright, 1976, pp. 222–234.Google Scholar
  29. Donchin, E., Callaway, E., Cooper, R., Desmedt, J. E., Goff, W. R., Hillyard, S. A., & Sutton, S. Publication criteria for studies of evoked potentials (EP) in man. In J. E. Desmedt (Ed.) ,Attention,Voluntary Contraction and Event-Related Cerebral Potentials. Prog. clin. Neurophysiology, Vol. 1, Basel: Karger, 1977, pp.1-11.Google Scholar
  30. Donchin, E., & Cohen, L. Average evoked potentials and intramodality selective attention.Electroencephalography&Clinical Neurophysiology, 1967, 22, 537–546.Google Scholar
  31. Donchin, E., & Cohen, L. Evoked potentials to stimuli presented to the suppressed eye in a binocular rivalry experiment.Vision Research, 1970, _l£, 103–106.Google Scholar
  32. Donchin, E., Gerbrandt, L. K., Leifer, L., & Tucker, L. Is the contingent negative variation contingent on a motor response?Psychophysiology, 1972, 9, 178–188.PubMedGoogle Scholar
  33. Donchin, E., Gerbrandt, L. K., Leifer, L., & Tucker, L. R. Contingent negative variations and motor response. In W. C. McCallum & J. R. Knott (Eds.),Event-related slow potentials of the brain:Their relations to behavior. Proceedings of the2nd International CNV Congress, Vancouver, 1971. Amsterdam: Elsevier Scientific Publishing Co., 1973.Google Scholar
  34. Donchin, E., & Heffley, E. Linear combinations in the analysis of ERPs. In D. A. Otto (Ed.),Multidisciplinary perspectives in event-related brain potential research. EPA-600/9-77-043, U. S. Government Printing Office, Washington, D.C.Google Scholar
  35. Donchin, E., & Herning, R. I. A simulation study of the efficacy of stepwise discriminant analysis in the detection and comparison of event-related potentials.Electroencephalography&Clinical Neurophysiology, 1975, 38, 51–68.Google Scholar
  36. Donchin, E., Kubovy, M., Kutas, M., Johnson, R., Jr., & Herning, R. I. Graded changes in evoked response (P300) amplitude as a function of cognitive activity.Perception&Psychophysics, 1973, 14, 319–324.Google Scholar
  37. Donchin, E., & Lindsley, D. B. Average evoked potentials and reaction times to visual stimuli.Electroencephalography&Clinical Neurophysiology, 1966, 20, 217–223.Google Scholar
  38. Donchin, E., Ritter, W., & McCallum, C. Cognitive psychophysiology: The endogenous components of the ERP. In E. Callaway, P. Tueting, & S. Koslow (Eds.)Brain event-related potentials in man, in press.Google Scholar
  39. Donchin, E., & Smith, D. B. D. The contingent negative variation and the late positive wave of the average evoked potential.Electroencephalography&Clinical Neurophysiology, 1970,29, 201–203.Google Scholar
  40. Donchin, E., & Sutton, S. Thepsychological significanceof evoked responses: A comment on Clark, Butler, and Rosner.Communications in Behavioral Biology, 1970, 5, 111–114.Google Scholar
  41. Donchin, E., Tueting, P., Ritter, W., Kutas, M., & Heffley, E. On the independence of the CNV and the P300 components of the human averaged evoked potential.Electroencephalography&Clinical Neurophysiology, 1975, 3_8, 449–461.Google Scholar
  42. Duncan-Johnson, C. C., & Donchin, E. On quantifying surprise: The variation in event-related potentials with subjective probability.Psychophysiology, 1977,14, 456–467.PubMedGoogle Scholar
  43. Tincan-Johnson, C. C., & Donchin, E. Series-based vs. trial-based determinants of expectancy and P300 amplitude.Psychophysiology, 1978, l.5, 262.Google Scholar
  44. Eriksen, C., & Johnson, H. Storage and decay characteristics of nonattended auditory stimuli.Journal of Experimental Psychology, 1964, 48, 28–3 6.Google Scholar
  45. Falmange, J. C., Cohen, S. P., & Dwivedi, A. Two-choice reactions as an ordered memory-scanning process. In P. M. A. Rabbitt & S.Domic (Eds.),Attention and performance, V. London: Academic Press, 1975.Google Scholar
  46. Ford, J. M., Roth, W. T., Dirks, S. J., & Kopell, B. S. Evoked potential correlates of signal recognition between and within modalities.Science, 1973,181, 465–466.PubMedGoogle Scholar
  47. Galton, F. Composite portraits.Journal of the Anthropological Institute, 1878,8,132–142.Google Scholar
  48. Garcia-Austt, E., Vanzulli, A., Bogacz, J., & Rodriguez-Barrios, R. Influence of the occular muscles upon photic habituation in man.Electroencephalography&Clinical Neurophysiology, 1963,15, 281–286.Google Scholar
  49. Gilden, L., Vaughan, H. G., & Costa, L. D. Summated human EEG potentials associated with voluntary movement.Electroencephalography&Clinical Neurophysiology, 1966,20, 433–438.Google Scholar
  50. Gomer, F. E., Spicuzza, R. J., & O’Donnell, R. D. Evoked potential correlates of visual item recognition during memoryscanning tasks.Physiological Psychology, 1976, 4, 61–65.Google Scholar
  51. Haider, M., Spong, P., & Lindsley, D. B. Attention, vigilance, and cortical evoked-potentials in humans.Science, 1964,145, 180–182.PubMedGoogle Scholar
  52. Harter, M. R., & Salmon, L. E. Intra-modality selective attention and evoked cortical potentials to randomly presented patterns.Electroencephalography&Clinical Neurophysiology, 1972,32, 605–613.Google Scholar
  53. Hartley, L. R. The effects of stimulus relevance on the cortical evoked potentials.Quarterly Journal of Experimental Psychology, 1970, 22, 531–546.PubMedGoogle Scholar
  54. Hernandez-Peon, R., Scherrer, H., & Jouvet, M. Modification of electrical activity in cochlear nucleus duringattentionin unanesthetized cats.Science, 1956,123, 331–332.PubMedGoogle Scholar
  55. Hillyard, S. A. The CNV and the vertex evoked potential during signal detection: a preliminary report. In E. Donchin and D. B. Lindsley (Eds.),Average Evoked Potentials:Methods,Results,and Evaluations. Washington, D.C.: U.S. Government Printing Office, 1969.Google Scholar
  56. Hillyard, S. A. The CNV and human behavior. A review. In W. C. McCallum & J. R. Rnott (Eds.),Event-related slow potentials of the brain: Their relations to behavior. Proceedings of the2nd International CNV Congress, Vancouver, 1971. Amsterdam: Elsevier Scientific Publishing Co., 1973.Google Scholar
  57. Hillyard, S. A., Hink, R. F., Schwent, V. L., & Picton, T. W. Electrical signs of selective attention in the human brain.Science, 1973,182, 177–180.PubMedGoogle Scholar
  58. Hillyard, S. A., Squires, K. C., Bauer, J. W., & Lindsay, P. H. Evoked potential correlates of auditory signal detection.Science, 1971,172, 1357–1360.PubMedGoogle Scholar
  59. Irwin, D. A., Knott, J. R., McAdam, D. W., & Rebert, C. S. Motivational determinants of thecontingent negative variation.Electroencephalography&Clinical Neurophysiology, 1966,21, 538–543.Google Scholar
  60. Jewett, D. L., & Williston, J. S. Auditory evoked far fields averaged from the scalp of humans.Brain, 1971,94, 681–696.PubMedGoogle Scholar
  61. Johnson, R. E., Jr., & Donchin, E. Does P300 amplitude depend on the expectancy for physical stimuli or for stimulus categories?Psychophysiology, 1978, 15., 262.Google Scholar
  62. Johnson, R. E., Jr. & Donchin, E. On how P300 amplitude varies with the utility of the eliciting stimuli.Electroencephalography&Clinical Neurophysiology, 1978b, 44, 424–437.Google Scholar
  63. Karlin, L. Cognition, preparation, and sensory-evoked potentials.Psychological Bulletin, 1970, 73, 122–136.Google Scholar
  64. Karlin, L., & Martz, M. J., Jr. Response probability and sensory-evoked potentials. In S. Kornblum (Ed.),Attention and performance,IV. New York: Academic Press, 1973.Google Scholar
  65. Karlin, L., Martz, M. J., Brauth, S. E., & Mordkoff, A. M. Auditory evoked potentials, motor potentials and reaction time.Electroencephalography&Clinical Neurophysiology, 1971, 31, 129–136.Google Scholar
  66. Karlin, L., Martz, M. J., & Mordkoff, A. M. Motor performance and sensory-evoked potentials.Electroencephalography&Clinical Neurophysiology, 1970, 28, 307–313.Google Scholar
  67. Klinke, R., Fruhstorfer, H., & Finkenzeller, P. Evoked responses as a function of external and stored information.Electroencephalography&Clinical Neurophysiology, 1968,25, 119Google Scholar
  68. Klorman, R., & Bentsen, E. Effects of warning-signal intensity on the early and late components of the contingent negative variation.Biological Psychology, 1975,3, 163-175.Google Scholar
  69. Kornhuber, H. H., & Deecke, L. Hirnpotential and erungen bei willkurbewegungen und passiven bewegungen des menschen: Bereitsschaftpotential und reafferente potentiale.Pflugers Archiv fur die gesamte Physiologie des Menschen und der Tiere, 1965,284, 1–17.PubMedGoogle Scholar
  70. Kutas, M. Preparation to respond as manifested by movementrelated brain potentials. Unpublished doctoral dissertation, University of Illinois at Urbana-Champaign, 1977.Google Scholar
  71. Kutas, M., & Donchin, E. Studies of squeezing: Handedness, responding hand, response force, and asymmetry of readiness potential.Science, 1974,186, 545–548.PubMedGoogle Scholar
  72. Kutas, M., & Donchin, E. The effect of handedness, the responding hand, and response force on the contralateral dominance of the readiness potential. In J. Desmedt (Ed.),Attention,voluntary contraction and event-related cerebral potentials Vol. 1. Basel: Karger, 1977.Google Scholar
  73. Kutas, M., & Donchin, E. The effects of subject strategies on the lateralization of movement related potentials, Proceedings of American EEG Society, Miami Beach, Florida, 1977.Electroencephalography&Clinical Neurophysiology, (in press).Google Scholar
  74. Kutas, M., McCarthy, G., & Donchin, E. Augmenting mental chronometry: The P300 as a measure of stimulus evaluation time.Science, 1977,197, 792–795.PubMedGoogle Scholar
  75. Laming, D. R. J. Subjective probability in choice-reaction experiments.Journal of Mathematical Psychology, 1969, _6, 81–120.Google Scholar
  76. Levit, R. A., Sutton, S., & Zubin, J. Evoked potential correlates of information processing in psychiatric patients.Psychological Medicine, 1973,3; 487–494.PubMedGoogle Scholar
  77. Levy, J. Psychobiological implications of bilateral asymmetry. In S. J. Dimond and J. G. Beaumont (Eds.),Hemispheric function in the human brain. London: Paul Elek, 1974.Google Scholar
  78. Lindsley, D. B. Emotion. In S. S. Stevens (Ed.),Handbook of Experimental Psychology. New York: John Wiley, 1951.Google Scholar
  79. Loveless, N. E. The effect of warning interval on signal detection and event-related slow potentials of the brain.Perception&Psychophysics, 1975, 17, 565–570.Google Scholar
  80. Loveless, N. E., & Sanford, A. J. Slow potentials correlates of preparatory sets.Biological Psychology, 1974, 1, 303–314.PubMedGoogle Scholar
  81. Low, M. D., Borda, R. P., Frost, J. D., Jr., and Kellaway, P. Surface-negative slow-potential shift associated with conditioning in man.Neurology(Minneapolis), 1966,16, 771–782.Google Scholar
  82. Mackworth, N. H. Researches on the measurement of human performance.Medical research council special reports, Series No. 268. London: H.M.S.O., 1950.Google Scholar
  83. Massaro, D. Retroactive interference in short-term recognition memory for pitch.Journal of Experimental Psychology, 1970,83, 32–39.PubMedGoogle Scholar
  84. McAdam, D. W. The contingent negative variations. In R. F. Thompson & M. M. Patterson (Eds.), Bioelectric recording techniques : Part B Electroencephalography and human brain potentials. New York: Academic Press, 1974.Google Scholar
  85. McAdam, D. W., & Rubin, E. H. Readiness potential, vertex positive wave, contingent negative variation and accuracy of perception.Electroencephalography&Clinical Neurophysiology, 1971, 30, 511–517.Google Scholar
  86. McCallum, W. C., & Papakostopoulos, D. The CNV and reaction time in situations of increasing complexity. In W. C. McCallum & J. R. Rnott (Eds.), Event-related slow potentials of the brain: Their relations to behavior. Proceedings of the2nd International CNV Congress, Vancouver, 1971. Amsterdam: Elsevier Scientific Publishing Co., 1973.Google Scholar
  87. McCarthy, G., & Donchin, E. The effects of temporal and event uncertainty in determining the waveforms of the auditory event related potential (ERP).Psychophysiology, 1976, 13, 581–590.PubMedGoogle Scholar
  88. McCarthy, G., & Donchin, E. Brain potentials associated with structural and functional visual matching.Neuropsychologia, in press.Google Scholar
  89. McCarthy, G., Kutas, M., & Donchin, E. Breaking the speedaccuracy barrier: Detection of errors in a choice reaction time paradigm using P300 latency. Manuscript in preparation.Google Scholar
  90. Messick, D. M., & Rapoport, A. A comparison of two payoff functions on multiple-choice decision behavior.Journal of Experimental Psychology, 1965, 69, 75–83.PubMedGoogle Scholar
  91. Moray, N.Attention,selective processes in vision and hearing. London: Hutchinson, 1969.Google Scholar
  92. Morrell, L. & Morrell, F. Evoked potentials and reaction times: A study of intra-individual variability.Electroencephalography&Clinical Neurophysiology, 1966, 20, 567–575.Google Scholar
  93. Myers, J. L. Probability learning and sequence learning. In W. K. Estes (Ed.),Handbook of learning and cognitive processes, Vol. 3. Hillsdale, N.J.: Lawrence Erlbaum Associates, 1976.Google Scholar
  94. Naatanen, R. Selective attention and evoked potentials.Annales Academiae Scientiarum Fennicae, 1967,151, 1–226.Google Scholar
  95. Naatanen, R. Evoked potential, EEG, and slow potential correlates of selective attention.Acta Psychologica, 1970, 33, 178–192.PubMedGoogle Scholar
  96. Naatanen, R. Selective attention and evoked potentials in humans--a critical review.Behavioral Biology, 1975, 2, 237–307.Google Scholar
  97. Neimark, E. D., & Shuford, E. H. Comparision of predictions and estimates in a probability-learning situation.Journal of Experimental Psychology, 1959, 57, 294–298.PubMedGoogle Scholar
  98. Parasuraman, R., & Davies, D. R. Response and evoked potential latencies associated with commission errors in visual monitoring.Perception and Psychophysics, 1975, 17, 465–468.Google Scholar
  99. Paul, D. D., & Sutton, S. Evoked potential correlates of psycho-physical judgments: The threshold problem. A new reply to Clark, Butler, and Rosner.Behavioral Biology, 1973, 9, 421–433.Google Scholar
  100. Pearson, K. The life, letters, and labours of Francis Galton. Vol. 2,Researches of Middle Life. Cambridge, Eng.: Cambridge University Press, 1924.Google Scholar
  101. Picton, T. W., Campbell, K. B., Baribeau-Braun, J., & Proulx, G. B. The neurophysiology of human attention: A tutorial review. In J. Requin (Ed.),Attention and Performance,VII, in press.Google Scholar
  102. Picton, T. W., Hillyard, S. A., & Galambos, R. Cortical evoked responses to omitted stimuli.Major problems of brain electrophysiology, Moscow: USSR Academy of Sciences, 1974.Google Scholar
  103. Picton, T. W., Hillyard, S. A., Krausz, H. T., & Galambos, R. Human auditory evoked potentials, I: evaluation of components.Electroencephalography&Clinical Neurophysiology, 1974,36, 179–190.Google Scholar
  104. Pribram, K. H., & McGuinness, D. Arousal, activation, and effort in the control of attention.Psychological Review, 1975,82, 116–149.PubMedGoogle Scholar
  105. Reber, A. S., & Millward, R. B. Event observation in probability learning.Journal of Experimental Psychology, 1968,77, 317–327.PubMedGoogle Scholar
  106. Rebert, C. S., & Tecce, J. J. A summary of CNV and reaction time. In W. C. McCallum & J. R. Knott (Eds.),Event-related slow potentials of the brain;Their relations to behavior. Proceedings of the2nd International CNV Congress, Vancouver, 1971. Amsterdam: Elsevier Scientific Publishing Company, 1973, 173–178.Google Scholar
  107. Ritter, W., Simson, R., & Vaughan, H. G., Jr. Association cortex potentials and reaction time in auditory discrimination.Electroencephalography&Clinical Neurophysiology, 1972,33, 547–555.Google Scholar
  108. Ritter, W., & Vaughan, H. G., Jr. Averaged evoked responses in vigilance and discrimination: A reassessment.Science, 1969,164, 326–328.PubMedGoogle Scholar
  109. Rohrbaugh, J. W., Donchin, E., & Eriksen, C. W. Decision making and the P300 component of the cortical evoked response.Perception&Psychophysics, 1974, 15., 368–374.Google Scholar
  110. Rohrbaugh, J. W., Syndulko, K., & Lindsley, D. B. Brain wave components of the contingent negative variation in humans.Science, 1976,191, 1055–1057.PubMedGoogle Scholar
  111. Rosner, B. S., Allison, T., Swanson, E., & Goff, R. W. A new instrument for the summation of evoked responses from the nervous system.Electroencephalography&Clinical Neurophysiology, 1960, 12, 532–545.Google Scholar
  112. Roth, W. T., Ford, J. M., Lewis, S. J., & Kopell, B. S. Effects of stimulus probability and task-relevance on event-related potentials.Psychophysiology, 1976,13, 311–317.PubMedGoogle Scholar
  113. Roth, W. T., Kopell, B. S., Tinklenberg, J. R., Darley, C. F., Sikora, R., & Vesecky, T. B. The contingent negative variation during a memory retrieval task.Electroencephalography&Clinical Neurophysiology, 1975, 38, 171–174.Google Scholar
  114. Ruchkin, D. S., & Sutton, S. Visual evoked and emitted potentials and stimulus significance.Psychonomic Society Bulletin, 1973, 2, 144–146.Google Scholar
  115. Ruchkin, D. S., & Sutton, S. Emitted P300 potentials and temporal uncertainties.Electroencephalography&Clinical Neurophysiology, in press.Google Scholar
  116. Satterfield, J. H. Evoked cortical response enhancement and attention in man. A study of responses to auditory and shock stimuli.Electroencephalography&Clinical Neurophysiology, 1965, 19, 470–475.Google Scholar
  117. Satterfield, J. H. & Cheatum, D. Evoked cortical potential correlates of attention in human subjects.Electroencephalography & Clinical Neurophysiology, 1964,17, 456.Google Scholar
  118. Schwent, V. L., & Hillyard, S. A. Evoked potential correlates of selective attention with multiple-channel auditory inputs.Electroencephalography&Clinical Neurophysiology, 1975,38, 131–138.Google Scholar
  119. Schwent, V. L., Hillyard, S. A., & Galambos, R. Selective attention and the auditory vertex potential. I. Effects of stimulus delivery rate.Electroencephalography&Clinical Neurophysiology, 1976, 40, 604–614. (a)Google Scholar
  120. Schwent, V. L., Hillyard, S. A., & Galambos, R. Selective attention and the auditory vertex potential. II. Effects of signal intensity and masking noise.Electroencephalography&Clinical Neurophysiology, 1976, 40, 615–622. (b)Google Scholar
  121. Schwent, V. L., Snyder, E., & Hillyard, S. A. Auditory evoked potentials during multichannel selective listening: Role of pitch and localization cues.Journal of Experimental Psychology:Human Perception&Performance, 1976,2,313–325.Google Scholar
  122. Sheridan, T. B., & Ferrell, W. R.Man-machine systems:Information,control,and decision models of human performance, Cambridge, Mass.: MIT Press, 1974.Google Scholar
  123. Smith, D. B. D., Donchin, E., Cohen, L., & Starr, A. Auditory averaged evoked potentials in man during selective binaural listening.Electroencephalography&Clinical Neurophysiology, 1970, 28, 146–152.Google Scholar
  124. Sokolov, E. N. In Maltzman, I. & Cole, K. (Eds.),Handbook of Contemporary Soviet Psychology. New York: Basic Books, 1969.Google Scholar
  125. Sperling, G. The information available in brief visual presentations.Psychological Monographs, 1960, 11 (Whole No. 498).Google Scholar
  126. Squires, K. C., & Donchin, E. Beyond averaging: The use of discriminant functions to recognize event related potentials elicited by single auditory stimuli.Electroencephalography&Clinical Neurophysiology, 1976, 41, 449–459.Google Scholar
  127. Squires, K. C., Donchin, E., Herning, R. I., & McCarthy, G. On the influence of task relevance and stimulus probability on event-related potential components.Electroencephalography&Clinical Neurophysiology, 1977, 42, 1–14.Google Scholar
  128. Squires, K., Petuchowski, S., Wickens, C., & Donchin, E. The effects of stimulus sequence on event related potentials: A comparison of visual and auditory sequences.Perception&Psychophysics, 1977, 22, 31–40.Google Scholar
  129. Squires, K. C., Wickens, C., Squires, N. K., & Donchin, E. The effect of stimulus sequence on the waveform of the cortical event-related potential.Science, 1976,193, 1142–1146.PubMedGoogle Scholar
  130. Squires, K. C., Wickens, C., Squires, N. K., & Donchin, E. Sequential dependencies of the waveform of the event-related potential: a preliminary report. In D. A. Otto (Ed.),Multidisciplinary perspectives in event-related brain potential research. EPA-6001-9-77-043, U. S. Government Printing Office, Washington,. D. C., in press.Google Scholar
  131. Squires, N. K., Donchin, E., Squires, K. C., & Grossberg, S. Bisensory stimulation: Inferring decision-related processes from the P300 component.Journal of Experimental Psychology:Human Perception&Performance, 1977, 3, 299–315.Google Scholar
  132. Squires, N. K., Squires, K. C., & Hillyard, S. A. Two varieties of long-latency positive waves evoked by unpredictable auditory stimuli in man.Electroencephalography&Clinical Neurophysiology, 1975, 38, 387–401.Google Scholar
  133. Stuss, D. T., & Picton, T. W. Neurophysiological correlates of human concept learning.Behavioral Biology, in press.Google Scholar
  134. Sutton, S. The specification of psychological variables in an average evoked potential experiment. In E. Donchin & D. B. Lindsley (Eds.),Average evoked potentials:Methods,results and evaluations. Washington, D. C.: U. S. Goverment Printing Office, 1969.Google Scholar
  135. Sutton, S., Braren, M., Zubin, J., & John, E. R. Evoked-potential correlates of stimulus uncertainty.Science, 1965,150, 1187–1188.PubMedGoogle Scholar
  136. Sutton, S., Tueting, P., Zubin, J., & John, E. R. Information delivery and the sensory evoked potential.Science, 1967,155, 1436–1439.PubMedGoogle Scholar
  137. Syndulko, K., & Lindsley, D. B. Motor and sensory determinants of cortical slow potential shifts in man. In J. E. Desmedt (Ed.),Attention,voluntary contraction and event-related cerebral potentials,Vol. K Basel: Karger, 1977, 97–131.Google Scholar
  138. Tecce, J. J. Contingent negative variation (CNV) and psychological processes in man.Psychological Bulletin, 1972,77, 73–108.PubMedGoogle Scholar
  139. Thatcher, R. Evoked potential correlates of hemispheric lateralization during semantic information processing. In S. Harnad, R. W. Doty, L. Goldstein, J. Jaynes, & G. Krauthamer (Eds.),Lateralization in the Nervous System. New York: Academic Press, 1977.Google Scholar
  140. Theios, J. Reaction time measurements in the study of memory processes: Theory and data. In G. H. Bower (Ed.),The psychology of learning and motivation:Advances in research and theory, 7. New York, Academic Press, 1973.Google Scholar
  141. Tueting, P. Event-related potentials, cognitive events, and information processing. In D. Otto (Ed.),Multidisciplinary Perspectives in Event-Related Brain Potential Research. Washington, D.C.: EPA-600/9-77-043, U.S. Government Printing Office, in press.Google Scholar
  142. Tueting, P., Sutton, S., & Zubin, J. Quantitative evoked potential correlates of the probability of events.Psychophysiology, 1970, 7, 385–394.PubMedGoogle Scholar
  143. Vaughan, H. G., Jr. The relationship of brain activity to scalp recordings of event-related potentials. In E. Donchin & D. B. Lindsley (Eds.),Average evoked potentials:Methods,results and evaluations. Washington, D.C.: U.S. Goverment Printing Office, 1969.Google Scholar
  144. Vlek, C. A. J. Multiple probability learning. In A. F. Sanders (Ed.),Attention and performance,III. Amsterdam: North Holland Publishing Co., 1970.Google Scholar
  145. Walter, W. G., Cooper, R., Aldridge, V. J., McCallum, W. C., & Winter, A. L. Contingent negative variation: An electric sign of sensorimotor association and expectancy in the human brain.Nature(London), 1964,203, 380–384.Google Scholar
  146. Weerts, T. C., & Lang, P. J. The effects of eye fixation and stimulus and response location on the contingent negative variation (CNV).Biological Psychology, 1973, 1, 1–19.PubMedGoogle Scholar
  147. Weinberg, H., Walter, W. G., & Crow, H. J. Intracerebral events in humans related to real and imaginary stimuli.Electroencephalography&Clinical Neurophysiology, 1970,29, 1–9.Google Scholar
  148. Wilkinson, R. T. Relationship between CNV, its resolution, and the evoked response. In McCallum, W. C. & Knott, T. R. (Eds.),The Responsive Brain. Bristol, England, 1973. Bristol: John Wright, 1976.Google Scholar
  149. Wilkinson, R. T., & Morlock, H. C., Jr. Auditory evoked response and reaction time.Electroencephalography&Clinical Neurophysiology, 1967, 23, 50–56.Google Scholar
  150. Wilkinson, R. T., & Spence, M. T. Determinants of the poststimulus resolution of the contingent negative variation (CNV).Electroencephalography&Clinical Neurophysiology, 1973,35, 503–509.Google Scholar
  151. Wood, C. C., & Jennings, R. Speed-accuracy tradeoff functions in choice reaction time: Experimental designs and computational procedures.Perception and Psychophysics, 1976, Vol. 19(1), 92–101.Google Scholar
  152. Woodworth, R. S. & Schlosberg, H.Experimental Psychology, Henry Holt & Co., New York, 1954.Google Scholar
  153. Woody, C. D. Characterization of an adaptive filter for the analysis of variable latency neuroelectric signals.Medical&Biological Engineering, 1967, 5, 539–553.Google Scholar

Copyright information

© Plenum Press, New York 1979

Authors and Affiliations

  • Emanuel Donchin
    • 1
  1. 1.Cognitive Psychophysiology Laboratory, Department of PsychologyUniversity of IllinoisChampaignUSA

Personalised recommendations