Advertisement

Structure and Function of RNA Bacteriophages

  • Walter Fiers
Part of the Comprehensive Virology book series (CV)

Abstract

Although RNA bacteriophages were discovered only relatively recently (Loeb and Zinder, 1961), they have attracted considerable attention ever since. Because of their small size, one could hope that these would be the first viruses whose complete structure would be elucidated, and for which all biological events constituting the infection cycle would be understood in molecular and biophysical detail. These biological events include phage adsorption and penetration, expression of the viral genetic information, interference with the host cell metabolism, replication of the viral genome, assembly, and virus release through lysis. Although these aims have certainly not yet been completely fulfilled, today the molecular biology of the RNA bacteriophages is undoubtedly the most advanced of that for any living organism (assuming of course that a virus is considered an “organism,” which is a question of definition). Another reason for the interest in RNA phages is that they constitute a convenient model system whose molecular biology may contribute considerably to the understanding of RNA viruses in general. The versatility of a microbial system for biochemical and genetic experimentation, combined with the short infection cycle (less than 30 min) and high yields (more than 2 × 1012 pfu/ml),* offer obvious practical advantages.

Keywords

Coat Protein Ribosome Binding Site Minus Strand Secondary Structure Model Replicase Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

Reviews

  1. Bradley, D. E., 1967, Ultrastructure of bacteriophages and bacteriocins, BacterioL Rev. 31: 230.PubMedGoogle Scholar
  2. Eoyang, L., and August, J. T., 1974, Reproduction of RNA bacteriophages, in: Comprehensive Virology, Vol. 2 ( H. Fraenkel-Conrat and R. R. Wagner, eds.), p. 1, Penum Press, New York.Google Scholar
  3. Fiers, W., 1974, RNA bacteriophages, in: Handbook of Genetics, Vol. 1 ( R. C. King, ed.), p. 271, Plenum Press, New York.Google Scholar
  4. Hindley, J., 1973, Structure and strategy in phage RNA, in: Progress in Biophysics and Molecular Biology, Vol. 26 (J. A. V, Butler and D. Noble, eds.), p. 269, Pergamon Press, Oxford.Google Scholar
  5. Hohn, T., and Hohn, B., 1970, Structure and assembly of simple RNA bacteriophages, Adv. Virus Res. 16:43,PubMedGoogle Scholar
  6. Kozak, M., and Nathans, D., 1972, Translation of the genome of a ribonucleic acid bacteriophage, BacterioL Rev. 36: 109.PubMedGoogle Scholar
  7. Lodish, H. F., 1968, The replication of RNA-containing bacteriophages, in: Progress in Biophysics and Molecular Biology ( J. A. V. Butler and D. Noble, eds.), p. 285, Pergamon Press, Oxford.Google Scholar
  8. Lodish, H. F., 1976, Translational control of protein synthesis, Annu. Rev. Biochem. 45: 39.PubMedGoogle Scholar
  9. Stavis, R. L., and August, J. T., 1970, The biochemistry of RNA bacteriophage replication, Annu. Rev. Biochem. 45: 527.Google Scholar
  10. Steitz, J. A., 1979, Genetic signals and nucleotide sequences in messenger RNA, in: Biological Regulation and Development, Vol. 1: Gene Expression ( R. Goldberger, ed.), p. 349, Plenum Press, New York.Google Scholar
  11. Valentine, R. C.; Ward, R., and Strand, M., 1969, The replication cycle of RNA bacteriophages, Adv. Virus Res. 15: 1.PubMedGoogle Scholar
  12. Weissmann, C., 1974, The making of a phage, FEBS Lett. 40: S10.PubMedGoogle Scholar
  13. Weissmann, C., and Ochoa, S., 1967, Replication of phage RNA, Progr. Nucleic Acid Res. Mol. Biol. 6: 353.Google Scholar
  14. Weissmann, C., Billeter, M. A., Goodman, H. M., Hindley, J., and Weber, H., 1973, Structure and function of phage RNA, Annu. Rev. Biochem. 42: 303.PubMedGoogle Scholar
  15. Zinder, N. D., 1965, RNA phages, Annu. Rev. Microbiol. 19: 455.PubMedGoogle Scholar
  16. Zinder, N. D. (ed.), 1975, RNA Phages, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.Google Scholar

Specific References

  1. Achtman, M., Willetts, N., and Clark, A. J., 1971, Beginning a genetic analysis of conjugational transfer determined by the F factor in Escherichia coli by isolation and characterization of transfer-deficient mutants, J. Bacteriol. 106: 529.PubMedGoogle Scholar
  2. Adams, J. M., and Cory, S., 1970, Untranslated nucleotide sequence at the 5′-end of R17 bacteriophage RNA, Nature (London) 227: 570.Google Scholar
  3. Adams, J. M., Jeppesen, P. G. N., Sanger, F., and Barrell, B. F., 1969, Nucleotide sequence from the coat protein cistron of R17 bacteriophage RNA, Nature (London) 223: 1009.Google Scholar
  4. Adams, J. M., Cory, S., and Spahr, P. F., 1972a, Nucleotide sequences of fragments of R17 bacteriophage RNA from the region immediately preceding the coat protein cistron, Eur. J. Biochem. 29: 469.PubMedGoogle Scholar
  5. Adams, J. M., Spahr, P. F., and Cory, S., 1972b, Nucleotide sequence from the 5′ end to the first cistron of R17 bacteriophage ribonucleic acid. Biochemistry 11: 976.PubMedGoogle Scholar
  6. Ames, B. N., and Hartman, P. E., 1963, The histidine operon. Cold Spring Harbor Symp. 28: 349.Google Scholar
  7. Ammann, J., Delius, H., and Hofschneider, P. H., 1964, Isolation and properties of an intact phage-specific replicative form of RNA phage M12, J. Mol. Biol. 10: 557.PubMedGoogle Scholar
  8. Anderson, W. F., and Gilbert, J. M., 1969, Translational control of in vitro hemoglobin synthesis. Cold Spring Harbor Symp. 34: 585.Google Scholar
  9. Argetsinger, J., 1968, A slowly sedimenting, infective form of bacteriophage R17, J. Mol. Biol. 33: 947.Google Scholar
  10. Argetsinger, J. E., and Gussin, G. N., 1966, Intact ribonucleic acid from defective particles of bacteriophage R17, J. Mol. Biol. 21: 421.PubMedGoogle Scholar
  11. Argetsinger-Steitz, J., 1968a, Identification of the A protein as a structural component of bacteriophage R17, J. Mol. Biol. 33: 923.Google Scholar
  12. Argetsinger-Steitz, J., 1968b, Isolation of the A protein from bacteriophage R17, J. Mol. Biol. 33: 937.Google Scholar
  13. Argetsinger-Steitz, J., Wahba, A. J., Langhrea, M., and Moore, P. B., 1977, Differential requirements for polypeptide chain initiation complex formation at the three bacteriophage R17 initiator regions. Nucleic Acids Res. 4: 1.Google Scholar
  14. Atkins, J. F., and Gesteland, R. F., 1975, The synthetase gene of the RNA phages R17, MS2 and f2 has a single UAG terminator codon, Mol. Gen. Genet. 139: 19.PubMedGoogle Scholar
  15. August, J. T., Banerjee, A. K., Eoyang, L., Franze de Fernandez, T., Hori, K., Kuo, C. H., Rensing, U., and Shapiro, L., 1968, Synthesis of bacteriophage Qβ RNA, Cold Spring Harbor Symp. Quant. Biol. 33: 73.PubMedGoogle Scholar
  16. Aviv, H., Bovine, J., Loyd, B., and Leder, P., 1972, Translation of bacteriophage Qß messenger RNA in a murine Krebs 2 ascites tumor cell-free system. Science 178: 1293.PubMedGoogle Scholar
  17. Ball, L. A., and Kaesberg, P., 1973, A polarity gradient in the expression of the replicase gene of RNA bacteriophage Qß, J. Mol. Biol. 74: 547.PubMedGoogle Scholar
  18. Bamford, O. H., Palva, E. T., and Lounatmaa, K., 1976, Ultrastructure and life cycle of the lipid-containing bacteriophage ϕ6, J. Gen. Virol. 32: 249.PubMedGoogle Scholar
  19. Banerjee, A. K., Kuo, C. H., and August, J. T., 1969a, Replication of RNA viruses. VIII. Direction of chain growth in the Qß RNA polymerase reaction, J. Mol. Biol. 40: 445.PubMedGoogle Scholar
  20. Banerjee, A. K., Rensing, U., and August, J. T., 1969b. Replication of RNA viruses. X. Replication of a natural 6 S RNA by the Qß RNA polymerase, J. Mol. Biol. 45: 181.PubMedGoogle Scholar
  21. Bassel, B. A., Jr., and Spiegelman, S., 1967, Specific cleavage of RNA and identification of the fragment carrying the 3′-OH terminus, Proc. Natl. Acad. Sci. USA 58: 1155.PubMedGoogle Scholar
  22. Bastin, M., Dasgupta, R., Hall, T. C., and Kaesberg, P., 1976, Similarity in structure and function of the 3′-terminal region of the four brome mosaic viral RNA’s, J. Mol. Biol. 103: 737.PubMedGoogle Scholar
  23. Bendis, I., and Shapiro, L., 1970, Properties of Caulobacter ribonucleic acid bacteriophage ϕCb5, J. Virol. 6: 847.PubMedGoogle Scholar
  24. Benike, C., McClements, W., and Davis, J. W., 1975, The molecular size of the RNA genome of Pseudomonas aeruginosa bacteriophage PP7, Virology 66: 625.PubMedGoogle Scholar
  25. Bernardi, A., and Spahr, P.-F., 1972, Nucleotide sequence at the binding site for coat protein on RNA of bacteriophage R17, Proc. Natl. Acad. Sci. USA 69: 3033.PubMedGoogle Scholar
  26. Billeter, M. A., Libonati, M., Vinuela, E., and Weissmann, C., 1966, Replication of viral RNA. X. Turnover of virus-specific double-stranded RNA during replication of phage MS2 in Escherichia coli, J. Biol. Chem. 241: 4750.Google Scholar
  27. Billeter, M. A., Dahlberg, J. E., Goodman, H. M., Hindley, J., and Weissmann, C., 1969, Sequence of the first 175 nucleotides from the 5′-terminus of RNA synthesized in vitro. Nature (London) 224: 1083.Google Scholar
  28. Billeter, M., Parsons, J. T., and Coffin, J. M., 1974, The nucleotide sequence complexity of avian tumor virus RNA, Proc. Natl. Acad. Sci. USA 71: 3560.PubMedGoogle Scholar
  29. Bishop, D. H. L., and Bradley, D. E., 1965, Determination of base ratios of six ribonucleic acid bacteriophages specific to Escherichia coli, Biochem. J. 95: 82.PubMedGoogle Scholar
  30. Bishop, D. H. L., Claybrook, J. R., Pace, N.R., and Spiegelman, S., 1967, An analysis by gel electrophoresis of Qß-RNA complexes formed during the latent period of an in vitro synthesis, Proc. Natl. Acad. Sci. USA 57: 1474.PubMedGoogle Scholar
  31. Bishop, D. H. L., Mills, D. R., and Spiegelman, S., 1968, The sequence at the 5′-terminus of a self-replicating variant of viral Qß ribonucleic acid. Biochemistry 7: 3744.PubMedGoogle Scholar
  32. Blumenthal, T., Landers, T. A., and Weber, K., 1972, Bacteriophage Qß replicase contains the protein biosynthesis elongation factors EFTu and EFTs, Proc. Natl. Acad. Sci. USA 69: 1313.PubMedGoogle Scholar
  33. Boedtker, H., 1960, Configurational properties of tobacco mosaic virus ribonucleic acid, J. Mol. Biol. 2: 171.Google Scholar
  34. Boedtker, H., 1967, The reaction of ribonucleic acid with formaldehyde. I. Optical absorbance studies. Biochemistry 6: 2718.PubMedGoogle Scholar
  35. Boedtker, H., 1968, Dependence of the sedimentation coefficient on molecular weight of RNA after reaction with formaldehyde, J. Mol. Biol. 35: 61.PubMedGoogle Scholar
  36. Boedtker, H., 1971, Conformation independent molecular weight determination of RNA by gel electrophoresis, Biochim. Biophys. Acta 240: 448.Google Scholar
  37. Borer, P. N., Dengler, B., and Tinoco, I., Jr., 1974, Stability of Ribonucleic acid double-stranded helices, J. Mol. Biol. 86: 843.PubMedGoogle Scholar
  38. Borst, P., and Weissmann, C., 1965, Replication of viral RNA. VIII. Studies on the enzymatic mechanism of replication of MS2 RNA, Proc. Natl. Acad. Sci. USA 54: 982.PubMedGoogle Scholar
  39. Bosch, L. (ed.), 1972, The Mechanism of Protein Synthesis and Its Regulation, North-Holland, Amsterdam.Google Scholar
  40. Bradley, D. E., 1964, Some preliminary observations on filamentous and RNA bacteriophages, J. Ultrastruct. Res. 10: 385.PubMedGoogle Scholar
  41. Bradley, D. E., 1966, The structure and infective process of a Pseudomonas aeruginosa bacteriophage containing ribonucleic acid, J. Gen. Microbiol. 45: 83.Google Scholar
  42. Braun, R., and Behrens, K., 1969, A ribonuclease from Physarum:Biochemical properties and synthesis in the mitotic cycle, Biochim. Biophys. Acta 195: 87.PubMedGoogle Scholar
  43. Briand, J. P., Richards, K. E., Witz, J., and Hirth, L., 1976, Structure of the amino-acid accepting 3′-end of high-molecular weight eggplant mosaic virus RNA, Proc. Natl. Acad. Sci. USA 73: 737.PubMedGoogle Scholar
  44. Briand, J. P., Jonard, G., Guilley, H., Richards, K., and Hirth, L., 1977, Nucleotide sequence (n = 159) of the amino acid accepting 3′-OH extremity of turnip yellow mosaic virus RNA and the last portion of its coat protein cistron, Eur. J. Biochem. 72: 453.PubMedGoogle Scholar
  45. Brinton, C. C., Jr., 1971, The properties of sex pili, the viral nature of “conjugal” genetic transfer systems, and some possible approaches to the control of bacterial drug resistance, Critical Rev. Microbiol. 1: 105.Google Scholar
  46. Brinton, C. C., Gemski, P., and Carnahan, J., 1964, A new type of bacterial pilus genetically controlled by the fertility factor of E. coli K12 and its role in chromosome transfer, Proc. Natl. Acad. Sci. USA 52: 776.PubMedGoogle Scholar
  47. Brownlee, G. G., 1972, Determination of sequences in RNA, in: Laboratory Techniques in Biochemistry and Molecular Biology, Vol. 3, Part 1 ( T. S. Work and E. Work, eds.), pp. 1–266, North-Holland, Amsterdam.Google Scholar
  48. Brownlee, G. G., and Sanger, F., 1969, Chromatography of 32P-labelled oligonucleotides on thin layers of DEAE-cellulose, Eur. J. Biochem. 11: 395.PubMedGoogle Scholar
  49. Brownlee, G. G., Sanger, F., and Barrell, B. G., 1968, The sequence of 5 S ribosomal ribonucleic acid, J. Mol. Biol. 34: 379.PubMedGoogle Scholar
  50. Camerini-Otero, R. D., Franklin, R. M., and Day, L. A., 1974, Molecular weights, dispersion of refractive index increments, and dimensions from transmittance spectrophotometry: Bacteriophages R17, T7 and PM2, and TMV, Biochemistry 13: 3763.PubMedGoogle Scholar
  51. Capecchi, M. R., and Webster, R. E., 1975, Bacteriophage RNA as template for in vitro protein synthesis, in: RNA Phages ( N. D. Zinder, ed.), p. 279, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.Google Scholar
  52. Capecchi, M. R., Hughes, S. H., and Wahl, G. M., 1975, Yeast supersuppressors are altered tRNAs capable of translating a nonsense codon in vitro. Cell 6: 269.Google Scholar
  53. Carmichael, G. C., Weber, K., Niveleau, A., and Wahba, A. J., 1975, The host factor required for RNA phage Qß RNA replication in vitro, J. Biol. Chem. 250: 3607.PubMedGoogle Scholar
  54. Caskey, C. T., Beaudet, A., and Nirenberg, M., 1968, RNA codons and protein synthesis. 15. Dissimilar responses of mammalian and bacterial transfer RNA fractions to messenger RNA codons, J. Mol. Biol. 37: 99.PubMedGoogle Scholar
  55. Chan, T.-S., Webster, R. E., and Zinder, N. D., 1971, Suppression of UGA codon by a tryptophan tRNA, Mol. Biol. 56: 101.Google Scholar
  56. Clark, B. F. C., and Marcker, K. A., 1966, The role of 7V-formyl-methionyl-tRNA in protein biosynthesis, J. Mol. Biol. 17: 394.PubMedGoogle Scholar
  57. Contreras, R., and Fiers, W., 1971, A new method for partial digestion useful for sequence analysis of polynucleotides, FEBS Lett. 16: 281.PubMedGoogle Scholar
  58. Contreras, R., and Fiers, W., 1975, A method for the isolation of cytidylate series from ribonuclease Ti-oligonucleotides, Anal. Biochem. 67: 319.PubMedGoogle Scholar
  59. Contreras, R., Vandenberghe, A., Min Jou, W., De Wächter, R., and Fiers, W., 1971, Studies on the bacteriophage MS2 nucleotide sequence of a 3′-terminal fragment (n = 104), FEBS Lett. 18: 141.PubMedGoogle Scholar
  60. Contreras, R., Vandenberghe, A., Volckaert, G., Min Jou, W., and Fiers, W., 1972, Studies on the bacteriophage MS2. XIX. Some nucleotide sequences from the RNA polymerase gene, FEBS Lett. 24: 339.PubMedGoogle Scholar
  61. Contreras, R., Ysebaert, M., Min Jou, W., and Fiers, W., 1973, Bacteriophage MS2 RNA: Nucleotide sequence of the end of the A protein gene and the intercistronic region, Nature (London) New Biol. 241: 99.Google Scholar
  62. Cory, S., Spahr, P. F., and Adams, J. M., 1970, Untranslated nucleotide sequence in R17 bacteriophage RNA, Cold Spring Harbor Symp. Quant. Biol. 35: 1.Google Scholar
  63. Cory, S., Adams, J. M., Spahr, P.-F., and Rensing, U., 1972, Sequence of 51 nucleotides at the 3′-end of R17 bacteriophage RNA, J. Mol. Biol. 63: 41.PubMedGoogle Scholar
  64. Crick, F. H. C., Leslie Barnett, F. R. S., Brenner, S., and Watts-Tobin, R. J., 1961, General nature of the genetic code for proteins. Nature (London) 192: 1227.Google Scholar
  65. Crothers, D. M., Cole, P. E., Hilbers, C. W., and Schulman, R. G., 1974, The molecular mechanism of thermal unfolding of Escherichia coli formylmethionine transfer RNA, J. Mol. Biol. 87: 63.PubMedGoogle Scholar
  66. Crowther, R. A., Amos, L. A., and Finch, J. T., 1975, Three-dimensional image reconstructions of bacteriophages R17 and f2, J. Mol. Biol. 98: 631.PubMedGoogle Scholar
  67. Curtiss, L. K., and Krueger, R. G., 1974, Localization of coliphage MS2 A-protein, Virol. 14: 503.Google Scholar
  68. Czernilofsky, A. P., Kurland, C. G., and Stoffler, G., 1975, 30 S ribosomal proteins associated with the 3′-terminus of 16 S RNA, FEBS Lett. 58: 281.PubMedGoogle Scholar
  69. Dahlberg, A. E., and Dahlberg, J. E., 1975, Binding of ribosomal protein SI of Escherichia coli to the 3′ end of 16 S rRNA, Proc. Natl. Acad. Sci. USA 72: 2940.PubMedGoogle Scholar
  70. Dahlberg, J. E., 1968, Terminal sequence of bacteriophage RNAs, Nature (London) 220: 548.Google Scholar
  71. Datta, N., Hedges, R. W., Shaw, E. J., Sykes, R. B., and Richmond, M. H., 1971, Properties of an R factor from Pseudomonas aeruginosa, J. Bacteriol. 108: 1244.PubMedGoogle Scholar
  72. Davies, J. W., and Kaesberg, P., 1973, Translation of virus mRNA: Synthesis of bacteriophage Qß proteins in a cell-free extract from wheat embryo, J. Virol. 12: 1434.PubMedGoogle Scholar
  73. Davis, J. E., and Benike, C., 1974, Translation of virus mRNA: Synthesis of bacteriophage PP7 proteins in cell-free extracts from Pseudomonas aeruginosa, Virology 61: 450.Google Scholar
  74. Davis, J. E., Strauss, J. H., and Sinsheimer, R. L., 1961, Bacteriophage MS2: Another RNA phage, Science 134: 1427.Google Scholar
  75. Delisi, C., and Crothers, D. M., 1971, Prediction of RNA secondary structure, Proc. Natl. Acad. Sci. USA 68: 2682.PubMedGoogle Scholar
  76. Devos, R., Gillis, E., and Fiers, W., 1976a, The enzymic addition of poly(A) to the 3′- end of RNA using bacteriophage MS2 RNA as a model system, Eur. J. Biochem. 62: 401.PubMedGoogle Scholar
  77. Devos, R., van Emmelo, J., Seurinck-Opsomer, C., Gillis, E., and Fiers, W., 1916b. Addition by ATP: RNA adenyltransferase from Escherichia coli of 3′-linked oligo(A) to bacteriophage Qß RNA and its effect on RNA replication, Biochim. Biophys. Acta 447: 319.Google Scholar
  78. Devos, R., van Emmelo, J., Celen, P., Gillis, E., and Fiers, W., 1977, Synthesis of discrete reverse transcripts of in vitro polyadenylated bacteriophage RNA by AMV-dependent DNA polymerase, Eur. J. Biochem. 79: 419.PubMedGoogle Scholar
  79. Devos, R., van Emmelo, J., Contreras, R., and Fiers, W., 1979, Construction and characterization of a plasmid containing a nearly full-size copy of bacteriophage MS2 RNA J. Mol. Biol. 128: 595.PubMedGoogle Scholar
  80. De Wächter, R., and Fiers, W., 1967, Studies on the bacteriophage MS2. IV. The 3′-OH terminal undecanucleotide sequence of the viral RNA chain, J. Mol. Biol. 30: 507.PubMedGoogle Scholar
  81. De Wächter, R., and Fiers, W., 1969, Sequences at the 5′-terminus of bacteriophage Qß RNA, Nature (London) 221: 233.Google Scholar
  82. De Wächter, R., and Fiers, W., 1970, The 5′-terminal nucleotide sequence of bacteriophage MS2 RNA, Cold Spring Harbor Symp. Quant. Biol. 35: 11.Google Scholar
  83. De Wächter, R., and Fiers, W., 1971, Fractionation of RNA by electrophoresis on Polyacrylamide gel slabs, in: Methods in Enzymology, Vol. 21 ( L. Grossman and K. Moldave, eds.), p. 167, Academic Press, New York.Google Scholar
  84. De Wächter, R., and Fiers, W., 1972, Preparative two-dimensional Polyacrylamide gel electrophoresis of 32P-labeled RNA, Anal. Biochem. 49: 184.PubMedGoogle Scholar
  85. De Wächter, R., Verhassel, J. P., and Fiers, W., 1968a, The 5′-terminal end group of the RNA of the bacteriophage MS2, Biochim. Biophys. Acta 157: 195.Google Scholar
  86. De Wächter, R., Verhassel, J. P., and Fiers, W., 1968b, Studies on the bacteriophage MS2. V. The 5′-terminal tetranucleotide sequence of the viral RNA chain, FEBS Lett. 1: 93.PubMedGoogle Scholar
  87. De Wächter, R., Merregaert, J., Vandenberghe, A., Contreras, R., and Fiers, W., 1971a, Studies on the bacteriophage MS2: The untranslated 5′-terminal nucleotide sequence preceding the first cistron, Eur. J. Biochem. 22: 400.PubMedGoogle Scholar
  88. De Wächter, R., Vandenberghe, A., Merregaert, J., Contreras, R., and Fiers, W., 1971b, The leader sequence from the 5′-terminus to the A-protein initiation codon in MS2 virus RNA, Proc. Natl. Acad. Sci. USA 68: 585.PubMedGoogle Scholar
  89. Dhaese, P., Vandekerckhove, J., Vingerhoed, J. P., and van Montagu, M., 1977, Studies on PRRI, an RNA bacteriophage with broad host range, Arch. Intern. Physiol. Biochim. 85: 168.Google Scholar
  90. Dhillon, E. K. S., and Dhillon, T. S., 1974, Synthesis of indicator strains and density of ribonucleic acid-containing coliphages in sewage, Appl. Microbiol. 27: 840.Google Scholar
  91. Domingo, E., Flavell, R. A., and Weissmann, C., 1976, In vitro site-directed mutagenesis: Generation and properties of an infectious extracistronic mutant of bacteriophage Qß Gene 1: 3.PubMedGoogle Scholar
  92. Domingo, E., Sabo, D., Taniguchi, T., and Weissmann, C., 1978, Nucleotide sequence heterogeneity of an RNA phage population. Cell 13: 735.PubMedGoogle Scholar
  93. DuBow, M. S., and Blumenthal, T., 1975, Host factor for coliphage Qß RNA replication is present in Pseudomonasputida, Mol. Gen. Genet. 141: 113.PubMedGoogle Scholar
  94. Dunker, A. K., and Paranchych, W., 1975, On the structure of R17 phage. Virology 67: 297.PubMedGoogle Scholar
  95. Edlind, T. D., and Bass, A. R., 1977, Secondary structure of RNA from bacteriophage f2, Qß and PP7, J. Virol. 24: 135.PubMedGoogle Scholar
  96. Eggen, K., and Nathans, D., 1969, Regulation of protein synthesis directed by coliphage MS2 RNA. II. In vitro repression by phage coat protein, J. Mol. Biol. 39: 293.PubMedGoogle Scholar
  97. Elton, R. A., and Fiers, W., 1976, Rhythmic variations in purine run frequencies in bacteriophage RNA, J. Theor. Biol. 63: 49.PubMedGoogle Scholar
  98. Engelhardt, D. L., and Zinder, N. D., 1964, Host-dependent mutants of the bacteriophage f2. III. Infective RNA, Virology 23:552.Google Scholar
  99. Engelhardt, D. L., Robertson, H. D., and Zinder, N. D., 1968, In vitro translation of multistranded RNA from Escherichia coli infected by bacteriophage f2, Proc. Natl. Acad. Sci. USA 59: 972.PubMedGoogle Scholar
  100. Enger, M. D., and Kaesberg, P., 1965, Comparative studies of the coat proteins of R17 and M12 bacteriophages, J. Mol. Biol. 13: 260.PubMedGoogle Scholar
  101. Enger, M. D., Stubbs, E. A., Mitra, S., and Kaesberg, P., 1963, Biophysical characteristics of the RNA-containing bacterial virus R17, Biochemistry 49: 857.Google Scholar
  102. Eoyang, L., and August, J. T., 1971, Qß RNA polymerase from phage Qß-infected E. coli, in: Procedures in Nucleic Acid Research, Vol. 2 ( G. L. Cantoni and D. R. Davies, eds.), p. 829, Harper and Row, New York.Google Scholar
  103. Eoyang, L., and August, J. T., 1974, Reproduction of RNA bacteriophages, in: Comprehensive Virology, Vol. 2 ( H. Fraenkel-Conrat and R. R. Wagner, eds.), p. 1, Plenum Press, New York.Google Scholar
  104. Erikson, R. L., and Franklin, R. M., 1966, Symposium on replication of viral nucleic acids. I. Information and properties of a replicative intermediate in the biosynthesis of viral ribonucleic acid, Bacteriol. Rev. 30: 267.PubMedGoogle Scholar
  105. Feary, T. W., Fisher, E., Jr., and Fisher, T. N., 1963, A small RNA-containing Pseudomonas aeruginosa bacteriophage, Biochem. Biophys. Res. Commun. 10: 359.Google Scholar
  106. Feary, T. W., Fisher, E., Jr., and Fisher, T. N., 1964, Isolation and preliminary characteristics of three bacteriophages associated with a lysogenic strain of Pseudomonas aeruginosa, J. Bacteriol. 87: 196.PubMedGoogle Scholar
  107. Fedoroff, N., 1975, Replicase of the phage f2, in: RNA Phages ( N. D. Zinder, ed.), p. 235, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.Google Scholar
  108. Fedoroff, N. V., and Zinder, N. D., 1971, Structure of the poly(G) polymerase component of the bacteriophage f2 replicase, Proc. Natl. Acad. Sci. USA 68: 1838.PubMedGoogle Scholar
  109. Fenwick, M. L., Erikson, R. L., and Franklin, R. M., 1964, Replication of the RNA of bacteriophage R17, Science 146: 527.PubMedGoogle Scholar
  110. Fiers, W., 1966, The rhythmic genetic code of RNA-bacteriophages, Nature (London) 212: 822.Google Scholar
  111. Fiers, W., 1967, Studies on the bacteriophage MS2. III. Sedimentation heterogenity of viral RNA preparations, Virology 33: 413.PubMedGoogle Scholar
  112. Fiers, W., 1974, RNA-bacteriophages, in: Handbook of Genetics ( R. C. King, ed.), p. 271, Plenum Press, New York.Google Scholar
  113. Fiers, W., 1975, Chemical structure and biological activity of bacteriophage MS2- RNA, in: RNA Phages ( N. D. Zinder, ed.), p. 353, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.Google Scholar
  114. Fiers, W., Lepoutre, L., and Vandendriessche, L., 1965, Studies on the bacteriophage MS2. I. Distribution of purine sequences in the viral RNA and in yeast RNA, J. Mol. Biol. 13: 432.PubMedGoogle Scholar
  115. Fiers, W., De Wächter, R., Min Jou, W., and van Styvendaele, B., 1968, The structure of bacteriophage RNA, in: First Congress of Virology, Helsinki 1968 ( J. L. Melnick, ed.), p. 30, Karger, Basel.Google Scholar
  116. Fiers, W., van Montagu, M., De Wächter, R., Haegeman, G., Min Jou, W., Messens, E., Remaut, E., Vandenberghe, A., and van Styvendaele, B., 1969, Studies on the primary structure and the replication mechanism of bacteriophage RNA, Cold Spring Harbor Symp. Quant. Biol. 34: 697.PubMedGoogle Scholar
  117. Fiers, W., Contreras, R., De Wächter, R., Haegeman, G., Merregaert, J., Min Jou, W., and Vandenberghe, A., 1971, Recent progress in the sequence determination of bacteriophage MS2-RNA, Biochimie 53: 495.PubMedGoogle Scholar
  118. Fiers, W., Contreras, R., Duerinck, F., Haegeman, G., Merregaert, J., Min Jou, W., Raeymaekers, A., Volckaert, G., Ysebaert, M., van de Kerckhove, J., Nolf, F., and van Montagu, M., 1975, A-protein gene of bacteriophage MS2, Nature (London) 256: 273.Google Scholar
  119. Fiers, W., Contreras, R., Duerinck, F., Haegeman, G., Iserentant, D., Merregaert, J., Min Jou, W., Molemans, F., Raeymaekers, A., Vandenberghe, A., Volckaert, G., and Ysebaert, M., 1976, Complete nucleotide sequence of bacteriophage MS2-RNA: Primary and secondary structure of the replicase gene, Nature (London) 260: 500.Google Scholar
  120. Fink, T. R., and Crothers, D. M., 1972, Free energy of imperfect nucleic acid helices. I. The bulge effect, J. Mol Biol. 66: 1.PubMedGoogle Scholar
  121. Fisby, D. P., Newton, C., Carey, N. H., Fellner, P., Newman, J. F. E., Harris, T. J. R., and Brown, F., 1976, Oligonucleotide mapping of picornavirus RNAs by two-dimensional electrophoresis. Virology 11: 319.Google Scholar
  122. Fishbach, F. A., Harrison, P. M., and Anderegg, J. W., 1965, An X-ray scattering study of the bacterial virus R17, J. Mol. Biol. 13: 638.Google Scholar
  123. Fitch, W. M., 1976, Is there selection against wobble in codon-anticodon pairing? Science 194: 1173.PubMedGoogle Scholar
  124. Flavell, R. A., Sabo, D. L., Bandle, E. F., and Weissmann, C., 1974, Site-directed mutagenesis: Generation of an extracistronic mutation in bacteriophage Qß RNA, J. Mol. Biol. 89: 255.PubMedGoogle Scholar
  125. Fraenkel-Conrat, H., 1954, Reaction of nucleic acid with formaldehyde, Biochim. Biophys. Acta 15: 307.PubMedGoogle Scholar
  126. Fraenkel-Conrat, H., 1957, Degradation of tobacco mosaic virus with acetic acid, Virology 4: 1.PubMedGoogle Scholar
  127. Francke, B., and Hofschneider, P.H., 1966, Infectious nucleic acids of E. coli bacteriophages. IX. Sedimentation constants and strand integrity of infectious M12 phage replicative-form RNA, Proc. Natl. Acad. Sci. USA 56: 1883.PubMedGoogle Scholar
  128. Franklin, R. M., 1966, Purification and properties of the replicative intermediate of the RNA bacteriophage R17, Proc. Natl. Acad. Sci. USA 55: 1504.PubMedGoogle Scholar
  129. Franklin, R. M., 1967, Replication of bacteriophage ribonucleic acid: Some physical properties of single-stranded, double-stranded, and branched viral ribonucleic acid, J. Virol. 1: 64.PubMedGoogle Scholar
  130. Fukuma, I., and Cohen, S. S., 1975, Polyamines in bacteriophage R17 and its RNA, J. Virol. 16: 222.PubMedGoogle Scholar
  131. Garwes, D., Sillero, A., and Ochoa, S., 1969, Virus-specific proteins in E. coli infected with phage Qß, Biochim. Biophys. Acta Google Scholar
  132. Gesteland, R. F., 1966, Isolation and characterization of ribonuclease I mutants of Escherichia coli, J. Mol. Biol. 16: 67.PubMedGoogle Scholar
  133. Gesteland, R. F., and Boedtker, H., 1964, Some physical properties of bacteriophage R17 and its ribonucleic acid, J. Mol. Biol. 8: 496.PubMedGoogle Scholar
  134. Gesteland, R. F., Wolfner, M., Grisafi, P., Fink, G., Botstein, D., and Ruth, J. R., 1976, Yeast suppressors of UAA and UAG nonsense codons work efficiently in vitro via tRNA, Cell 7: 381.PubMedGoogle Scholar
  135. Ghosh, H. P., Soil, D., and Khorana, H. G., 1967, Studies on polynucleotides. LXVII. Initiation of protein synthesis in vitro as studied by using ribopolynucleotides with repeating nucleotide sequences as messenger, J. Mol. Biol. 25: 275.PubMedGoogle Scholar
  136. Giege, R., Briand, J. P., Mengual, R., Ebel, J. P., and Hirth, L., 1978, Valylation of the two RNA components of turnip yellow mosaic virus and specificity of the tRNA amino-acylation reaction, Eur. J. Biochem. 84: 251.PubMedGoogle Scholar
  137. Gilvarg, C., Bollum, F. J., and Weissmann, C., 1975, The in vitro addition of a poly-adenylate sequence to the 3′ end of phage Qß RNA and the biological activity of the product, Proc. Natl. Acad. Sci. USA 72: 428.PubMedGoogle Scholar
  138. Glitz, D. G., and Eichler, D., 1971, Nucleotides at the 5′-linked ends of bromegrass mosaic virus RNA and its fragments, Biochim. Biophys. Acta 238: 224.PubMedGoogle Scholar
  139. Goelz, S., and Steitz, J. A., 1977, Escherichia coli ribosomal subunit SI recognizes two sites in bacteriophage Qß RNA, J. Biol. Chem. 252: 5177.PubMedGoogle Scholar
  140. Goldberg, M. L., and Steitz, J. A., 1974, Cistron specificity of 30 S ribosomes heterologously reconstituted with components from Escherichia coli and Bacillus stearothermophilus. Biochemistry 13: 2123.PubMedGoogle Scholar
  141. Goldstein, J., 1967, Digestion of ribonucleic acid by an alkylated ribonuclease, J. Mol. Biol. 25: 123.PubMedGoogle Scholar
  142. Goodman, H. M., Billeter, M. A., Hindley, J., and Weissmann, C., 1970, The nucleotide sequence at the 5′-terminus of the Qß RNA minus strand, Proc. Natl. Acad. Sci. USA 67: 921.PubMedGoogle Scholar
  143. Gould, H., 1966, The specific cleavage of ribonucleic acid from reticulocyte ribosomal subunits. Biochemistry 5: 1103.PubMedGoogle Scholar
  144. Gralla, J., and Crothers, D. M., 1973a, Free energy of imperfect nucleic acid helices. II. Small hairpin loops, J. Mol. Biol. 73: 497.PubMedGoogle Scholar
  145. Gralla, J., and Crothers, D. M., 1973b, Free energy of imperfect nucleic acid helices. III. Small internal loops resulting from mismatches, J. Mol. Biol. 78: 301.PubMedGoogle Scholar
  146. Gralla, J., and Delisi, C., 1974, mRNA is expected to form stable secondary structures, Nature (London) 248: 330.Google Scholar
  147. Gralla, J., Steitz, J. A., and Crothers, D. M., 1974, Direct physical evidence for secondary structure in an isolated fragment of R17 Bacteriophage RNA, Nature (London) 248: 204.Google Scholar
  148. Granboulan, N., and Franklin, R. M., 1966, Electron microscopy of viral RNA, replicative form and replicative intermediate of the bacteriophage R17, J. Mol. Biol. 22: 173.Google Scholar
  149. Granboulan, N., and Franklin, R. M., 1968, Replication of bacteriophage ribonucleic acid: Analysis of the ultrastructure of the replicative form and the replicative intermediate of bacteriophage R17, J. Virol. 2: 129.PubMedGoogle Scholar
  150. Griffin, B. E., 1971, Separation of 32P-labeled ribonucleic acid components. The use of polyethylenimine-cellulose (TLC) as a second dimension in separating oligoribonu-cleotides of 4.5 S and 5 S from E. coli, FEBS Lett. 15: 165.PubMedGoogle Scholar
  151. Groner, Y., Pollack, Y., Berissi, H., and Revel, M., 1972, Cistron specific translation control protein in Escherichia coli. Nature (London) New Biol. 239: 16.Google Scholar
  152. Grosjean, H., Soil, D. G., and Crothers, D. M., 1976, Studies of the complex between transfer RNAs with complementary anticodons. I. Origins of enhanced affinity between complementary triplets, J. Mol. Biol. 103: 499.PubMedGoogle Scholar
  153. Grosjean, H., Sankoff, D., Min Jou, W., Fiers, W., and Cedergren, R. J., 1978, Bacteriophage MS2 RNA: A correlation between the stability of the codon-anticodon interaction and the choice of code words, J. Mol. Evol. 12: 113.PubMedGoogle Scholar
  154. Gross, H. J., Duerinck, F. R., and Fiers, W., 1970, The tRNA pyrophosphorylase activity of Escherichia coli: A study on substrate specificity, Eur. J. Biochem. 17: 116.PubMedGoogle Scholar
  155. Gupta, S. L., Chen, J., Schaefer, L., Lengyel, P., and Weissmann, S. M., 1970, Nucleotide sequence of a ribosome attachment site of bacteriophage f2 RNA, Biochem. Biophys. Res. Commun. 39: 883.PubMedGoogle Scholar
  156. Gussin, G. N., 1966, Three complementation groups in bacteriophage R17, J. Mol. Biol. 21: 435.PubMedGoogle Scholar
  157. Haegeman, G. and Fiers, W., 1973, Studies on the bacteriophage MS2: An internal nucleotide fragment resembling some ribosomal binding sites, Eur. J. Biochem. 36: 135.PubMedGoogle Scholar
  158. Haegeman, G., Min Jou, W., and Fiers, W., 1971, Studies on the bacteriophage MS2. IX. The heptanucleotide sequences present in the pancreatic ribonuclease digest of viral RNA, J. Mol. Biol. 57: 597.PubMedGoogle Scholar
  159. Happe, M., and Jockush, H., 1975, Phage Qß replicase: Cell-free synthesis of the phage-specific subunit and its assembly with host subunits to form active enzyme, Eur. J. Biochem. 58: 359.PubMedGoogle Scholar
  160. Harada, F., and Nishimura, S., 1974, Purification and characterization of AUA specific isoleucine transfer ribonucleic acid from Escherichia coli B, Biochemistry 13: 300.PubMedGoogle Scholar
  161. Haruna, I., and Spiegelman, S., 1965a, Specific template requirements of RNA replicases, Proc. Natl. Acad. Sci. USA 54: 579.PubMedGoogle Scholar
  162. Haruna, I., and Spiegelman, S., 1965b, Recognition of size and sequence by an RNA replicase, Proc. Natl. Acad. Sci. USA 54: 1189.PubMedGoogle Scholar
  163. Haruna, I., Nozu, K., Ohtaka, Y., and Spiegelman, S., 1963, An RNA “replicase” induced by and selective for a viral RNA: Isolation and properties, Proc. Natl. Acad. Sci. USA 50: 905.PubMedGoogle Scholar
  164. Haruna, I., Nishihara, T., and Watanabe, I., 1967, Template activity of various phage RNA for replicases of Qß and VK phages, Proc. Jpn. Acad. 46: 375.Google Scholar
  165. Haruna, I., Itoh, Y. H., Yamane, K., Miyake, T., Shiba, T., and Watanabe, I., 1971, Isolation and properties of RNA replicases induced by SP and FI phages, Proc. Natl. Acad. Sci. USA 68: 1778.PubMedGoogle Scholar
  166. Haselkorn, R., 1962, Studies on infectious RNA from turnip yellow mosaic virus, J. Mol. Biol. 4: 357.PubMedGoogle Scholar
  167. Heinrikson, R. L., 1966, On the alkylation of amino acid residues at the active site of ribonuclease, J. Biol. Chem. 241: 1393.PubMedGoogle Scholar
  168. Heisenberg, M., 1966, Formation of defective bacteriophage particles by fr amber mutants, J. Mol. Biol. 17: 136.PubMedGoogle Scholar
  169. Held, W. A., Gette, W. R., and Nomura, M., 1974, Role of 16 S ribosomal ribonucleic acid and the 30 S ribosomal protein SI2 in the initiation of natural messenger ribonucleic acid translation. Biochemistry 13: 2115.PubMedGoogle Scholar
  170. Hilbers, C. W., and Schulman, R. G., 1974, Assignment of the hydrogen bonded proton resonances in (Escherichia coli) tRNAGLU by sequential melting, Proc. Natl. Acad. Sci. USA 71: 3239.PubMedGoogle Scholar
  171. Hindennach, I., and Jockush, H., 1974, Peptide mapping of Qß proteins using cell-free synthesis. Virology 60: 327.PubMedGoogle Scholar
  172. Hindley, J., and Staples, D. H., 1969, Sequence of a ribosome binding site in bacteriophage Qß-RNA, Nature (London) 224: 964.Google Scholar
  173. Hindley, J., Staples, D. H., Billeter, M. A., and Weissmann, C., 1970, Location of the coat cistron on the RNA of phage Qß, Proc. Natl. Acad. Sci. USA 67: 1180.PubMedGoogle Scholar
  174. Hirata, A. A., Hung, P. P., Overby, L. R., and Mclntire, F. C., 1972, Antibody response to bacteriophage Qß and its structural components in rabbits, Immunochemistry 9: 555.PubMedGoogle Scholar
  175. Ho, N. W. Y., and Gilham, P. T., 1967, The reversible chemical modification of uracil, thymine, and guanine nucleotides and the modification of the action of ribonuclease on ribonucleic acid, Biochemistry 6: 3632.PubMedGoogle Scholar
  176. Hofschneider, P. H., 1963, Untersuchungen über “kleine” E. coli K12 Bakteriophagen, Z. Naturforsch. 18b: 203.Google Scholar
  177. Hofstetter, H., Monstein, H. J., and Weissmann, C., 1974, The readthrough protein Al is essential for the formation of viable Qß particles, Biochim. Biophys. Acta 374: 238.PubMedGoogle Scholar
  178. Hohn, T., 1967, Formation of defective bacteriophage particles by fr amber mutants, Eur. J. Biochem. 2: 152.PubMedGoogle Scholar
  179. Holley, R. W., Apgar, J., Everett, G. A., Madison, J. T., Marquisee, M., Merrill, S. H., Penswick, J. R., and Zamir, A., 1965, Structure of a ribonucleic acid. Science 147: 1462.PubMedGoogle Scholar
  180. Horiuchi, K., 1975, Genetic studies of RNA phages, in: RNA Phages ( N. D. Zinder, ed.), p. 29, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.Google Scholar
  181. Horiuchi, K., and Adelberg, E. A., 1965, Growth of male-specific bacteriophage in Proteus mirabilis harboring F-genomes derived from Escherichia coli, J. Bacteriol. 89: 1231.PubMedGoogle Scholar
  182. Horiuchi, K., and Matsuhashi, S., 1970, Three cistrons in bacteriophage Qß, Virology 42: 49.PubMedGoogle Scholar
  183. Horiuchi, K., and Zinder, N. D., 1967, Azure mutants: A type of host-dependent mutant of the bacteriophage f2. Science 156: 1618.PubMedGoogle Scholar
  184. Horiuchi, K., Webster, R. E., and Matsuhashi, S., 1971, Gene products of bacteriophage Qß, Virology 45: 429.PubMedGoogle Scholar
  185. Hotham-Iglewski, B., and Franklin, R. M., 1967, Replication of bacteriophage ribonucleic acid: Alterations in polyribosome patterns and association of double-stranded RNA with polyribosomes in Escherichia coli infected with bacteriophage R17, Proc. Natl. Acad. Sci. USA 58: 743.PubMedGoogle Scholar
  186. Hotham-Iglewski, B., Phillips, L. A., and Franklin, R. M., 1968, Viral RNA transcription-translation complex in Escherichia coli infected with bacteriophage R17, Nature (London) 219: 700.Google Scholar
  187. Huez, G., Marbaix, G., Hubert, E., Cleuter, Y., Leclercq, M., Chantrenne, H., Devos, R., Soreq, H., Nudel, U., and Littauer, U. Z., 1975, Readenylation of polyadenylate-free globin messenger RNA restores its stability in vivo, Eur. J. Biochem. 59: 589.PubMedGoogle Scholar
  188. Inouye, H., Pollack, Y., and Petre, J., 1974, Physical and functional homology between ribosomal protein SI and interference factor i, Eur. J. Biochem. 45: 109.PubMedGoogle Scholar
  189. Isenberg, H., Cotter, R. I., and Gratzer, W. B., 1971, Secondary structure and interaction of RNA and protein in a bacteriophage, Biochim. Biophys. Acta 232: 184.PubMedGoogle Scholar
  190. Iserentant, D., and Fiers, W., 1976, Modification of some hairpin loops of the MS2 genome with the methoxyamine reagent. Arch. Intern. Physiol. Biochim. 84: 165.Google Scholar
  191. Isono, K., and Isono, S., 1976, Lack of ribosomal protein SI in Bacillus stearothermo-philus, Proc. Natl. Acad. Sci. USA 73: 767.PubMedGoogle Scholar
  192. Isono, S., and Isono, K., 1975, Role of ribosomal protein SI in protein synthesis: Effects of its addition to Bacillus stearothermophilus cell-free system, Eur. J. Biochem. 56: 15.PubMedGoogle Scholar
  193. Jacobson, A. B., 1976, Studies on secondary structure of single-stranded RNA from bacteriophage MS2 by electron microscopy, Proc. Natl. Acad. Sci. USA 73: 307.PubMedGoogle Scholar
  194. Jacobson, A. B., and Spahr, P. F., 1977, Studies on the secondary structure of single-stranded RNA from the bacteriophage MS2. II. Analysis of the RNase IV cleavage products, J. Mol. Biol. 115: 279.PubMedGoogle Scholar
  195. Jacrot, B., Chauvin, C., and Witz, J., 1977, Comparative neutron small-angle scattering study of small spherical RNA viruses. Nature (London) 266: 417.Google Scholar
  196. Jay, E., Bambara, R., Padmanabhan, R., and Wu, R., 1974, DNA sequence analysis: A general, simple and rapid method for sequencing large oligoribonucleotide fragments by mapping, Nucleic Acids Res. 1: 331.PubMedGoogle Scholar
  197. Jeppesen, P. G. N., 1971, The nucleotide sequences of some large ribonuclease T1 products from bacteriophage R17 ribonucleic acid, Biochem. J. 124: 357.PubMedGoogle Scholar
  198. Jeppesen, P. G. N., Nichols, J. L., Sanger, F., and Barrell, B. G., 1970a, Nucleotide sequences from bacteriophage R17 RNA, Cold Spring Harbor Symp. Quant. Biol. 35: 13.Google Scholar
  199. Jeppesen, P. G. N., Steitz, J. A., Gesteland, R. F., and Spahr, P. F., 1970b, Gene order in the bacteriophage R17 RNA: 5′-A protein-coat protein-synthetase-3′. Nature (London) 226: 230.Google Scholar
  200. Jeppesen, P. G. N., Barrell, B. F., Sanger, F., and Coulson, A. R., 1972, Nucleotide sequences of two fragments from the coat protein cistrons of bacteriophage R17 ribonucleic acid, Biochem. J. 128: 993.PubMedGoogle Scholar
  201. Johnson, B., and Szekely, M., 1977, Specific binding site of E. coli initiation factor 3 (IF3) at a 3′-terminal region of MS2 RNA, Nature (London) 267: 550.Google Scholar
  202. Kacian, D. L., Mills, D. R., and Spiegelman, S., 1971, The mechanism of Qß replication: Sequence at the 5′-terminus of a 6 S RNA template, Biochim. Biophys. Acta 238: 212.PubMedGoogle Scholar
  203. Kacian, D. L., Mills, D. R., Kramer, F. E., and Spiegelman, S., 1972, A replicating RNA molecule suitable for a detailed analysis of extracellular evolution and replication, Proc. Natl. Acad. Sci. USA 69: 3038.PubMedGoogle Scholar
  204. Kamen, R., 1969, Infectivity of bacteriophage R17 RNA after sequential removal of 3′-terminal nucleotides. Nature (London) 221: 321.Google Scholar
  205. Kamen, R., 1970, Characterization of the subunits of Qß replicase, Nature (London) 228: 527.Google Scholar
  206. Kamen, R., Kondo, M., Romer, W., and Weissmann, C., 1972, Reconstitution of Qß replicase lacking subunit a with protein-synthesis-interference factor i, Eur. J. Biochem. 31: 44.PubMedGoogle Scholar
  207. Kamen, R. I., Monstein, H. J., and Weissmann, C., 1974, The host factor requirement Qß RNA replicase, Biochim. Biophys. Acta 366: 292.PubMedGoogle Scholar
  208. Kelley, J. J., Frist, R. H., and Kaesberg, P., 1971, Chromatography of ribonuclease T1 digests of RNA on DEAE-cellulose and DEAE-Sephadex, Anal. Biochem. 44: 328.PubMedGoogle Scholar
  209. Kelly, R. B., Gould, J. L., and Sinsheimer, R. L., 1965, The replication of bacteriophage MS2. IV. RNA components specifically associated with infection, J. Mol. Biol. 11: 562.PubMedGoogle Scholar
  210. Khorana, H. G., Buchi, H., Ghosh, H., Gupta, N., Jacob, T. M., Kossel, H., Morgan, R., Narang, S. A., Ohtsuka, E., and Wells, R. D., 1966, Polynucleotide synthesis and the genetic code, Cold Spring Harbor Symp. Quant. Biol. 31: 39.PubMedGoogle Scholar
  211. Kitano, T., 1966a, Male specific bacteriophage in Shigella flexneri. I. Formation of male Shigella flexneri by F’ mediated transfer with Escherichia coli, Jpn. J. Med. Sci. Biol. 19: 65.Google Scholar
  212. Kitano, T., 1966b, Male specific bacteriophage in Shigella flexneri. II. Growth characteristics of phage in F+ Shigella, Jpn. J. Med. Sci. Biol. 19: 171.Google Scholar
  213. Knolle, P., and Hohn, T., 1975, Morphogenesis of RNA phages, in: RNA Phages ( N. D. Zinder, ed.), p. 147, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.Google Scholar
  214. Köhler, E., and Rohloff, H., 1974, Homologies in nucleotide sequences of RNA-phages Qß and R17, Z. Naturforsch. 29c: 433.Google Scholar
  215. Kolakofsky, D., and Weissmann, C., 1971, Possible mechanism for transition of viral RNA from polysome to replication complex, Nature (London) New Biol. 231: 42.Google Scholar
  216. Kolakofsky, D., Billeter, M. A., Weber, H., Weissmann, C., 1973, Resynchronization of RNA synthesis by coliphage Qß replicase at an internal site of the RNA template, J. Mol. Biol. 76: 271.PubMedGoogle Scholar
  217. Kondo, M., Gallerani, R., and Weissmann, C., 1970, Subunit structure of Qß replicase. Nature (London) 228: 525.Google Scholar
  218. Königsberg, W., Maita, T., Katze, J., and Weber, K., 1970, Amino acid sequence of the Qß coat protein. Nature (London) 227: 271.Google Scholar
  219. Konings, R. N. H., Ward, R., Francke, B., and Hofschneider, P. H., 1970, Gene order of RNA bacteriophage M12, Nature (London) 226: 604.Google Scholar
  220. Kozak, M., and Nathans, D., 1971, Fate of maturation protein during infection by coliphage MS2, Nature (London) New Biol. 234: 209.Google Scholar
  221. Kozak, M., and Nathans, D., 1972, Translation of the genome of a ribonucleic acid bacteriophage, Bacteriol. Rev. 36: 109.PubMedGoogle Scholar
  222. Krahn, P. M., O’Callaghan, R. J., and Paranchych, W., 1972, Stages in phage R17 infection. VI. Injection of A protein and RNA into the host cell. Virology 47: 628.PubMedGoogle Scholar
  223. Kramer, F. R., Mills, D. R., Cole, P. E., Nishihara, T., and Spiegelman, S., 1974, Evolution in vitro: Sequence and phenotype of a mutant RNA resistant to ethidium bromide, J. Mol. Biol. 89: 719.PubMedGoogle Scholar
  224. Krueger, R. G., 1965, The effect of streptomycin on antibody synthesis in vitro, Proc. Natl. Acad. Sci. USA 54: 144.PubMedGoogle Scholar
  225. Krueger, R. G., 1969, Serological relatedness of the ribonucleic acid-containing coliphages, J. Virol. 4: 567.PubMedGoogle Scholar
  226. Lagerkvist, U., 1978, Two out of three: An alternative method for codon reading, Proc. Natl. Acad. Sci. USA 75: 1759.PubMedGoogle Scholar
  227. Langbeheim, M., Arnon, R., and Sela, M., 1976, Antiviral effect on MS2 coliphage obtained with a synthetic antigen, Proc. Natl. Acad. Sci. USA 73: 4636.PubMedGoogle Scholar
  228. Lee, Y. F., and Wimmer, E., 1976, “Fingerprinting” high molecular weight RNA by two-dimensional gel electrophoresis: Application to poliovirus RNA, Nucleic Acids Res.Google Scholar
  229. Leffler, S., and Szer, W., 1973, Messenger selection by bacterial ribosomes, Proc. Natl. Acad. Sci. USA 70: 2364.PubMedGoogle Scholar
  230. Leffler, S., and Szer, W., 1974, Purification and properties of initiation factor IF-3 from Caulobacter crescentus, J. Biol. Chem. 249: 1458.PubMedGoogle Scholar
  231. Leffler, S., Hierowski, M., Poindexter, J. S., and Szer, W., 1971, Large scale isolation of the Caulobacter bacteriophage pCbS and its RNA genome, FEBS Lett. 19: 112.PubMedGoogle Scholar
  232. Leipold, B., and Hofschneider, P. H., 1975, Isolation of an infectious RNA-A-protein complex from the bacteriophage M12, FEBS Lett. 55: 50.PubMedGoogle Scholar
  233. Levisohn, R., and Spiegelman, S., 1968, The cloning of a self-replicating RNA molecule, Proc. Natl. Acad. Sci. USA 60: 866.PubMedGoogle Scholar
  234. Levisohn, R., and Spiegelman, S., 1969, Further extracellular Darwinian experiments with replicating RNA molecules: Diverse variants isolated under different selective conditions, Proc. Natl. Acad. Sci. USA 63: 805.PubMedGoogle Scholar
  235. Lin, L., and Schmidt, J., 1972, Adsorption of a ribonucleic acid bacteriophage of Pseudomonas aeruginosa. Arch. Mikrobiol. 83: 120.PubMedGoogle Scholar
  236. Lin, J.-Y., Tsung, C. M., and Fraenkel-Conrat, H., 1967, The coat protein of the RNA bacteriophage MS2, Mol. Biol. 24: 1.Google Scholar
  237. Ling, V., 1971, Sequence at the 5′-end of bacteriophage f2 RNA, Biochem. Biophys. Res. Commun. 42: 82.PubMedGoogle Scholar
  238. Ling, V., 1972, Fractionation and sequences of the large pyrimidine oligonucleotides from bacteriophage fd DNA, J. Mol Biol. 64: 81.Google Scholar
  239. Litvak, S., Tarrago, A., Tarrago-Litvak, L., and Allende, J. E., 1973, Elongation factor-viral genome interaction dependent on the aminoacylation of TYMV and TMV RNAs, Nature (London) New Biol. 241: 88.Google Scholar
  240. Lodish, H. F., 1968a, Bacteriophage f2 RNA: Control of translation and gene order. Nature (London) 220: 345.Google Scholar
  241. Lodish, H. F., 1968a, Polar effects of an amber mutation in f2 bacteriophage, J. Mol. Biol. 32: 47.PubMedGoogle Scholar
  242. Lodish, H. F., 1969, Species specificity of polypeptide chain initiation, Nature (London) 224: 867.Google Scholar
  243. Lodish, H. F., 1970a, Specificity in bacterial protein synthesis: Role of initiation factor and ribosomal subunits. Nature (London) 226: 705.Google Scholar
  244. Lodish, H. F., 1970b, Secondary structure of bacteriophage f2 ribonucleic acid and the initiation of in vitro protein biosynthesis, J. Mol. Biol. 50: 689.PubMedGoogle Scholar
  245. Lodish, H. F., 1975, Regulation of in vitro protein synthesis by bacteriophage RNA by RNA tertiary structure in: RNA Phages (N. D. Zinder, ed.), p. 301, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.Google Scholar
  246. Lodish, H. F., 1976, Translational control of protein synthesis, Annu. Rev. Biochem. 45: 39.PubMedGoogle Scholar
  247. Lodish, H. F., and Robertson, H. D., 1969, Cell-free synthesis of bacteriophage f2 maturation protein, J. MoL Biol. 45: 9.PubMedGoogle Scholar
  248. Lodish, H. F., and Zinder, N. D., 1966, Mutants of the bacteriophage f2. VHL Control mechanisms for phage-specific syntheses, J. Mol. Biol. 19: 333.PubMedGoogle Scholar
  249. Lodish, H. F., Cooper, S., and Zinder, N. D., 1964, Host-dependent mutants of the bacteriophage f2. IV. On the biosynthesis of a viral RNA polymerase. Virology 24: 60.PubMedGoogle Scholar
  250. Lodish, H. F., Horiuchi, K., and Zinder, N. D., 1965, Mutants of bacteriophage f2, V. On the production of non-infectious phage particles. Virology 27: 139.PubMedGoogle Scholar
  251. Loeb, T., and Zinder, N. D., 1961, A bacteriophage containing RNA, Proc. Natl. Acad. Sci. USA 47: 282.PubMedGoogle Scholar
  252. Lucas-Lenard, J., and Lipmann, F., 1971, Protein biosynthesis, Annu. Rev. Biochem. 40: 409.PubMedGoogle Scholar
  253. Maita, T., and Königsberg, W., 1971, The amino acid sequence of the Qß coat protein, J. Biol. Chem. 246: 5003.PubMedGoogle Scholar
  254. Marvin, D. A., and Hoffmann-Beding, H., 1963, A fibrous DNA phage (fd) and a spherical RNA phage (fr) specific for male strains of E. coli, Z. Naturforsch. 186: 884.Google Scholar
  255. Martin, J., and Webster, R. E., 1975, The in vitro translation of a terminating signal by a single Escherichia coli ribosome: The fate of the subunits, J. Biol. Chem. 250: 8132.PubMedGoogle Scholar
  256. Matthews, H. R., 1968, The distribution of purine nucleotides in µ2 viral ribonucleic acid, J. Gen. Virol. 3: 403.PubMedGoogle Scholar
  257. Matthews, K., and Cole, R. D., 1972a, Shell formation by capsid protein of f2 bacteriophage, J. Mol. Biol. 65: 1.PubMedGoogle Scholar
  258. Matthews, K., and Cole, R. D., 1972b, Interaction of lysozyme with f2 bacteriophage, J. Mol. Biol. 68: 173.PubMedGoogle Scholar
  259. McPhie, P., Hounsell, J., and Gratzer, W. B., 1966, The specific cleavage of yeast ribosomal ribonucleic acid with nucleases, Biochemistry 6: 988.Google Scholar
  260. Merregaert, J., 1976, Struktuur van de amino-terminus van het A-eiwitgen en van een polynukleotidefragment uit het replikase-gebied van de RNA Bateriofaag MS2, Ph.D. dissertation. University of Ghent, Belgium.Google Scholar
  261. Messens, E., and van Montagu, M., 1968, The synthesis of nucleoside 2′(3′)-phosphate 5′-triphosphates, FEES Lett. 1: 326.Google Scholar
  262. Meyer, F., Weber, H., Vollenweider, H. J., and Weissmann, C., 1975, The binding sites of Qß RNA, Experientia 31: 143.Google Scholar
  263. Mills, D. R., Peterson, R. L., and Spiegelman, S., 1967, An extracellular Darwinian experiment with a self-duplicating nucleic acid molecule, Proc. Natl. Acad. Sci. USA 58: 217.PubMedGoogle Scholar
  264. Mills, D. R., Bishop, D. H. L., and Spiegelman, S., 1968, The mechanism and direction of RNA synthesis templated by free minus strands of a “little” variant of Qß RNA, Proc. Natl. Acad. Sci. USA 60: 713.PubMedGoogle Scholar
  265. Mills, D. R., Kramer, F. R., and Spiegelman, S., 1973, Complete nucleotide sequence of a replicating RNA molecule. Science 180: 916.PubMedGoogle Scholar
  266. Mills, D. R., Kramer, F. R., Dobkin, C., Nishihara, T., and Spiegelman, S. 1975, Nucleotide sequence of microvariant RNA: Another small replicating molecule, Proc. Natl. Acad. Sci. USA 72: 4252.PubMedGoogle Scholar
  267. Min Jou, W., and Fiers, W., 1969, Studies on the bacteriophage MS2. VII. Structure determination of the longer polypurine sequences present in the pancreatic ribonuclease digest of the viral RNA, J. Mol. Biol. 40: 187.Google Scholar
  268. Min Jou, W., and Fiers, W., 1970, The 3′-terminal nucleotide sequence (n = 16) of bacteriophage MS2 RNA, FEBS Lett. 9: 222.Google Scholar
  269. Min Jou, W., and Fiers, W., 1976a, Sequence determination of Gp-rich oligonucleotides by means of the kethoxal modification, FEBS Lett. 66: 77.Google Scholar
  270. Min Jou, W., and Fiers, W., 1976b, Studies on the bacteriophage MS2. XXXIII. Comparison of the nucleotide sequence in related bacteriophage RNAs, J. Mol. Biol. 106: 1047.Google Scholar
  271. Min Jou, W., Fiers, W., Goodman, H., and Spahr, P., 1969, Allocation of polypurine tracts to two fragments of bacteriophage MS2 RNA, J. Mol. Biol. 42: 143.Google Scholar
  272. Min Jou, W., Haegeman, G., and Fiers, W., 1971, Studies on the bacteriophage MS2: Nucleotide fragments from the coat protein cistron, FEBS Lett. 13: 105.Google Scholar
  273. Min Jou, W., Haegeman, G., Ysebaert, M., and Fiers, W., 1972, Nucleotide sequence of the gene coding for the bacteriophage MS2 coat protein. Nature (London) 237: 82.Google Scholar
  274. Min Jou, W., van Montagu, M., and Fiers, W., 1976, On the possible modulating role of the isoleucine AUA-codon in bacteriophage MS2 RNA, Biochem. Biophys. Res. Commun. 73: 1083.Google Scholar
  275. Mitra, S., Enger, M. D., and Kaesberg, P., 1963, Physical and chemical properties of RNA from the bacterial virus R17, Proc. Natl. Acad. Sci. USA 50: 68.PubMedGoogle Scholar
  276. Mitra, S. K., Lustig, F., Akesson, B., and Lagerkvist, U., 1977, Codon-anticodon recognition in the valine codon family, J. Biol. Chem. 252: 471.PubMedGoogle Scholar
  277. Miyake, T., Shiba, T., and Watanabe, I., 1967, Grouping of RNA phages by a millipore filtration method, Jpn. J. Microbiol. 11: 203.Google Scholar
  278. Miyake, T., Shiba, T., Sakurai, T., and Watanabe, I., 1969, Isolation and properties of two new RNA phages SP and FI, Jpn. J. Microbiol. 13: 375.PubMedGoogle Scholar
  279. Miyake, T., Haruna, I., Shiba, T., Itoh, H., Yamane, K., and Watanabe, I., 1971, Grouping of RNA phages based on the template specificity of their RNA replicases, Proc. Natl. Acad. Sci. USA 68: 2022.PubMedGoogle Scholar
  280. Modak, M. J., and Notani, G. W., 1969, Properties of RNA containing bacteriophage f4, Experientia 25: 1027.PubMedGoogle Scholar
  281. Model, P., Webster, R. E., and Zinder, N. D., 1969, The UGA codon in vitro: Chain termination and suppression, J. Mol. Biol. 43: 177.PubMedGoogle Scholar
  282. Moore, C. M., Farron, F., Bohnert, D., and Weissmann, C., 1971, Possible origin of a minor virus specific protein (Al) in Qß particles, Nature (London) New Biol. 234: 204.Google Scholar
  283. Morrison, T. G., and Lodish, H. F., 1973, Translation of bacteriophage Qß RNA by cytoplasmic extracts of mammalian cells, Proc. Natl. Acad. Sci. USA 70: 315.PubMedGoogle Scholar
  284. Morrison, T. G., and Lodish, H. F., 1974, Recognition of protein synthesis initiation signals on bacteriophage ribonucleic acid by mammalian ribosomes, J. Biol. Chem. 249: 5860.PubMedGoogle Scholar
  285. Musso, R. E., de Crombrugghe, B., Pastan, I., Sklar, J., Yot, P., and Weissman, S., 1971, The 5′-terminal nucleotide sequence of galactose messenger ribonucleic acid oí Escherichia coli, Proc. Natl. Acad. Sci. USA 71: 4940.Google Scholar
  286. Nathans, D., Oeschger, M. P., Eggen, K., and Shimura, Y., 1966, Bacteriophage-specific proteins in E. coli infected with an RNA bacteriophage, Proc. Natl. Acad. Sci. USA 56: 1844.PubMedGoogle Scholar
  287. Nathans, D., Oeschger, M. P., Polmar, S. K., and Eggen, K., 1969, Regulation of protein synthesis by coliphage MS2 RNA. I. Phage protein and RNA synthesis in cells infected with suppressible mutants, J. Mol. Biol. 39: 279.PubMedGoogle Scholar
  288. Nichols, J. L., 1970, Nucleotide sequence from the polypeptide chain termination region of the coat protein cistron in bacteriophage R17 RNA, Nature (London) 225: 147.Google Scholar
  289. Nichols, J. L., and Robertson, H. D., 1971, Sequences of RNA fragments from the bacteriophage f2 coat protein cistron which differ from their R17 counterparts, Biochim. Biophys. Acta 228: 676.PubMedGoogle Scholar
  290. Nirenberg, M., Caskey, T., Marshall, R., Brimacombe, R., Kellogg, D., Doctor, B., Hatfield, D., Levin, J., Rottman, F., Pestka, S., Wilcox, M., and Anderson, F., 1966, The RNA code and protein synthesis, Cold Spring Harbor Symp. Quant. Biol. 31: 11.PubMedGoogle Scholar
  291. Nishihara, T., and Watanabe, L, 1969, Discrete buoyant density distribution among RNA phages, Virology 39: 360.PubMedGoogle Scholar
  292. Nishihara, T., Haruna, L, and Watanabe, L, 1969, Comparison of coat proteins from three groups of RNA phages. Virology 37: 153.PubMedGoogle Scholar
  293. Nishihara, T., Nozu, Y., and Okada, Y., 1970, Amino acid sequence of the coat protein of the RNA phage ZR, J. Biochem. Jpn. 67: 403.Google Scholar
  294. Ocada, Y., Amagase, S., and Tsugita, A., 1970, Frameshift mutation in the lysozyme gene of bacteriophage T4; Demonstration of the insertion of five bases, and a summary of in vivo codons and lysozyme activities, J. Mol. Biol. 54: 219.PubMedGoogle Scholar
  295. Olsen, R. H., and Shipley, P., 1973, Host range and properties of the Pseudomonas aeruginosa R factor R1822, 7. Bacteriol. 113: 772.Google Scholar
  296. Olsen, R. H., and Thomas, D. D., 1973, Characteristics and purification of PRPl, an RNA phage specific for the broad host range Pseudomonas R1822 drug resistance plasmid, J. Virol. 12: 1560.PubMedGoogle Scholar
  297. Oriel, P. J., and Koenig, J. A., 1968, The optical rotary dispersion of MS2 bacteriophage, Arch. Biochem. Biophys. 127: 274.PubMedGoogle Scholar
  298. Osborn, M., Weber, K., and Lodish, H. F., 1970a, Amino terminal peptides of RNA phage proteins synthesized in the cell free system, Biochem. Biophys. Res. Commun. 91: 748.Google Scholar
  299. Osborn, M., Weiner, A. M., and Weber, K., 1910b, Large scale purification of A-protein from bacteriophage R17, Eur. J. Biochem. 17: 63.Google Scholar
  300. Overby, L. R., Barlow, G. H., Doi, R. H., Jacob, H., and Spiegelman, S., 1966a, Comparison of two serologically distinct ribonucleic acid bacteriophages. II. Properties of the nucleic acids and coat proteins, J. Bacteriol. 92: 739.PubMedGoogle Scholar
  301. Overby, L. R., Barlow, G. H., Doi, R. H., Jacob, H., and Spiegelman, S., 1966b, Comparison of two serologically distinct ribonucleic acid bacteriophages. I. Properties of the viral particles, J. Bacteriol. 91: 442.PubMedGoogle Scholar
  302. Palmenberg, A., and Kaesberg, P., 1973, Amber mutant of bacteriophage Qß capable of causing overproduction of Qß replicase, 7. Virol. 11: 603.Google Scholar
  303. Paranchych, W., 1975, Attachment, ejection and penetration stages of the RNA phage infectious process, in: RNA Phages ( N. D. Zinder, ed.), p. 85, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.Google Scholar
  304. Paranchych, W., and Graham, A. F., 1962, Isolation and properties of an RNA-containing bacteriophage, 7. Cell. Comp. Physiol. 60: 199.Google Scholar
  305. Paranchych, W., Krahn, P. M., and Bradley, R. D., 1970, Stages in phage R17 infection, Virology 41: 465.PubMedGoogle Scholar
  306. Pfeifer, D., Davis, J. E., and Sinsheimer, R. L., 1964, The replication of bacteriophage MS2. III. Asymmetric complementation between temperature-sensitive mutants, J. Mol. Biol. 10: 412.PubMedGoogle Scholar
  307. Pilly, D., Niemeye, A., Schmidt, M., and Bargetzi, J. P., 1978, Enzymes for RNA sequence analysis, 7. Biol. Chem. 253: 437.Google Scholar
  308. Pinck, M., Yot, P., Chapeville, F., and Duranton, H. M., 1970, Enzymatic binding of valine to the 3′-end of TYMV-RNA, Nature (London) 226: 954.Google Scholar
  309. Pinder, J. C., Staynov, D. Z., and Gratzer, W. B., 1974, Electrophoresis of RNA in formamide. Biochemistry 13: 5373.PubMedGoogle Scholar
  310. Piatt, T., and Yanofsky, C., 1975, An intercistronic region and ribosome-binding site in bacterial messenger RNA, Proc. Natl. Acad. Sci. USA 72: 2399.Google Scholar
  311. Porter, A. G., and Hindley, J., 1973, The binding of Qß initiated fragments to E. coli ribosomes, FEBS Lett. 33: 339.PubMedGoogle Scholar
  312. Porter, A. G., Hindley, J., and Billeter, M. A., 1974, A sequence of 83 nucleotides containing the replicase cistron ribosome binding site of phage Qß RNA, Eur. J. Biochem. 41: 413.PubMedGoogle Scholar
  313. Radloff, R. J., and Kaesberg, P., 1973, Electrophoretic and other properties of bacteriophage Qß: The effect of a variable number of read-through proteins, J. Virol. 11: 116.PubMedGoogle Scholar
  314. RajBhandary, U. L., 1968, Studies on polynucleotides. LXXVII. The labeling of end groups in polynucleotide chains: The selective modification of diol end groups in ribonucleic acids, J. Biol. Chem. 243: 556.PubMedGoogle Scholar
  315. Randerath, K., Randerath, E., Chia, L. S. Y., Gupta, R. C., and Sivarajan, M., 1974, Sequence analysis of nonradioactive RNA fragments by periodate-phosphatase digestion and chemical tritium labeling: Characterization of large oligonucleotides and oligonucleotides containing modified nucleosides. Nucleic Acids Res. 1: 1121.PubMedGoogle Scholar
  316. Rappaport, I., 1970, An analysis of the inactivation of MS2 bacteriophage with antiserum, J. Gen. Virol. 6: 25.PubMedGoogle Scholar
  317. Reich, E., 1974, Tumor-associated fibrinolysis, in: Control of Proliferation in Animal Cells ( B. Clarkson and R. Baserga, eds.), p. 351, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.Google Scholar
  318. Remaut, E., and Fiers, W., 1972, Studies on the bacteriophage MS2. XVI. The termination signal of the A-protein cistron, 7. Mol. Biol. 71: 243.Google Scholar
  319. Rensing, U. F. E., 1973, A sequence of seventy-three nucleotides from the coliphage R17 genome, Biochem. J. 131: 593.PubMedGoogle Scholar
  320. Rensing, U., and August, J. T., 1969, The 3′-terminus and the replication of phage RNA, Nature (London) 224: 853.Google Scholar
  321. Rensing, U. F. E., and Coulson, A., 1973, Nucleotide sequences of similar size from the coliphage R17 genome, Biochem. J. 131: 605.PubMedGoogle Scholar
  322. Rensing, U. F. E., and Schoenmakers, J. G. G., 1973, A sequence of 50 nucleotides from coliphage R17 RNA, Eur. J. Biochem. 33: 8.PubMedGoogle Scholar
  323. Rensing, U. F. E., Coulson, A., and Schoenmakers, J. G. G., 1974, A sequence of 54 nucleotides from the A-protein cistron of coliphage R17 RNA. Eur. J. Biochem. 41: 431.PubMedGoogle Scholar
  324. Ricard, B., and Salzer, W., 1975, Secondary structure formed by random RNA sequences, Biochem. Biophys. Res. Commun. 63: 548.PubMedGoogle Scholar
  325. Rice, R. H., and Horst, J., 1972, Isoelectric focussing of viruses in polyacrylamide gels. Virology 49: 602.PubMedGoogle Scholar
  326. Rich, A., and RajBhandary, U. L., 1976, Transfer RNA: Molecular structure, sequence and properties, Annu. Rev. Biochem. 45: 805.PubMedGoogle Scholar
  327. Roblin, R., 1968, The 5′-terminus of bacteriophage R17 RNA: pppGp Mol. Biol. 31: 51.Google Scholar
  328. Roberts, J. W., and Gussin, G. N., 1967, Polarity in an amber mutant of bacteriophage R17, J. Mol. Biol. 30: 565.PubMedGoogle Scholar
  329. Robertson, H. D., and Jeppesen, P. G. N., 1972, Extent of variation in three related bacteriophage RNA molecules, J. Mol. Biol. 68: 417.PubMedGoogle Scholar
  330. Robertson, H. D., and Lodish, H. F., 1970, Messenger characteristics of nascent bacteriophage RNA, Proc. Natl. Acad. Sci. USA 67: 710.PubMedGoogle Scholar
  331. Robertson, H. D., and Zinder, N. D., 1968, Identification of the terminus of nascent f2 bacteriophage RNA, Nature (London) 220: 69.Google Scholar
  332. Robertson, H. D., and Zinder, N. D., 1969, Purification and properties of nascent f2 phage ribonucleic acid, J. Biol. Chem. 244: 5790.PubMedGoogle Scholar
  333. Robertson, H. D., Webster, R. E., and Zinder, N. D., 1968, Bacteriophage coat protein as repressor. Nature (London) 218: 533.Google Scholar
  334. Robinson, W. E., Frist, R. H., and Kaesberg, P., 1969, Genetic coding: Oligonucleotide coding for the first six amino acid residues of the coat protein of Rl7 bacteriophage, Science 166: 1291.PubMedGoogle Scholar
  335. Rohrmann, G. F., and Krueger, R. G., 1970, Precipitation and neutralization of bacteriophage MS2 by rabbit antibodies, J. Immunol. 104: 353.PubMedGoogle Scholar
  336. Sabo, D. L., Domingo, E., Bandle, E. F., Flavell, R. A., and Weissmann, C., 1977, A guanosine to adenosine transition in the 3′ terminal extracistronic region of bacteriophage Qß RNA leading to loss of infectivity, J. Mol. Biol. 112: 235.PubMedGoogle Scholar
  337. Saffhill, R., Schneider-Bernloehr, H., and Orgel, L. E., 1970, In vitro selection of bacteriophage Qß ribonucleic acid variants resistant to ethidium bromide, J. Mol. Biol. 51: 531.PubMedGoogle Scholar
  338. Sakurai, T., Miyake, T., Shiba, T., and Watanabe, I., 1968, Isolation of a possible fourth group of RNA phages, Jpn. J. Microbiol. 12: 544.PubMedGoogle Scholar
  339. Samuelson, G., and Kaesberg, P., 1970, An artificial top component of R17 bacteriophage, J. Mol. Biol. 47: 87.PubMedGoogle Scholar
  340. Sanger, F., and Brownlee, G. G., 1967, A two-dimensional fractionation method for radioactive nucleotides, in: Methods in Enzymology, Vol. 12A ( L. Grossman and K. Moldave, eds.), p. 361, Academic Press, New York.Google Scholar
  341. Sanger, F., Brownlee, G. G., and Barrell, B. G., 1965, A two-dimensional fractionation procedure for radioactive nucleotides, Mol. Biol. 13: 373.Google Scholar
  342. Sanger, F., Air, G. M., Barrell, B. G., Brown, N. L., Coulson, A. R., Fiddes, J. C., Hutchison, C. A., Ill, Slocombe, P. M., and Smith, M., 1977, Nucleotide sequence of bacteriophage 0X174 DNA, Nature (London) 265: 687.Google Scholar
  343. Schaffner, W., Ruegg, K. J., and Weissmann, C., 1977, Nanovariant RNAs: Nucleotide sequence and interaction with bacteriophage Qß replicase, J. Mol. Biol. 117: 877.PubMedGoogle Scholar
  344. Schmidt, J. M., 1966, Observations on the adsorption of Caulobacter bacteriophages containing ribonucleic acid, J. Gen. Microbiol. 45: 347.PubMedGoogle Scholar
  345. Schmidt, J. M., and Stanier, R. Y., 1965, Isolation and characterization of bacteriophage active against stalked bacteria, J. Gen. Microbiol. 39: 95.PubMedGoogle Scholar
  346. Schreier, M. H., Staehelin, T., Gesteland, R. F., and Spahr, P. F., 1973, Translation of bacteriophage R17 and Qß RNA in a mammalian cell-free system, J. Mol. Biol. 75: 575.PubMedGoogle Scholar
  347. Schubert, D., and Franck, H., 1970, The use of 2-chloroethanol for reversible depolymerization of the protein shell of bacteriophage fr, Z. Naturforsch. 25b: 711.Google Scholar
  348. Scott, D. W., 1965, Serological cross reactions among the RNA-containing coliphages. Virology 26: 85.PubMedGoogle Scholar
  349. Semancik, J. S., Vidaver, A. K., and van Etten, J. L., 1973, Characterization of a segmented double-helical RNA from bacteriophage 06,7. Mol. Biol. 78: 617.Google Scholar
  350. Senear, A. W., and Steitz, J. A., 1976, Site-specific interaction of Qß host factor and ribosomal protein SI with and R17 bacteriophage RNAs, J. Biol. Chem. 251: 1902.PubMedGoogle Scholar
  351. Shapiro, L., and Agabian-Keshishian, N., 1970, Specific assay for differentiation in the stalked bacterium Caulobacter crescentus, Proc. Natl. Acad. Sci. USA 67: 200.PubMedGoogle Scholar
  352. Shapiro, L., and Bendis, I., 1975, RNA phages of bacteria other than E. coli, in: RNA Phages ( N. D. Zinder, ed.), p. 397, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.Google Scholar
  353. Shapiro, L., Agabian-Keshishian, N., and Bendis, I., 1971, Bacterial differentiation. Science 173: 884.PubMedGoogle Scholar
  354. Shiba, R., 1975, Reconstitution of an infectious complex in RNA phages, Proc. Mol. Biol. Meeting Jpn., p. 4.Google Scholar
  355. Shiba, T., and Miyake, T., 1975, New type of infectious complex of E. coli RNA phage. Nature (London) 254: 157.Google Scholar
  356. Shine, J., and Dalgarno, L., 1974, The 3′-terminal sequence of Escherichia coli 16 S ribosomal RNA: Complementarity to nonsense triplets and ribosome binding sites, Proc. Nat. Acad. Sci. USA 71: 1342.PubMedGoogle Scholar
  357. Shine, J., and Dalgarno, L., 1975a, Terminal sequence analysis of bacterial ribosomal RNA: Correlation between the 3′-terminal-polypyrimidine sequence of 16 S RNA and translational specificity of the ribosome, Eur. J. Biochem. 57: 221.PubMedGoogle Scholar
  358. Shine, J., and Dalgarno, L., 1975b, Determinant of cistron specificity in bacterial ribosomes. Nature (London) 254: 34.Google Scholar
  359. Silberklang, M., Prochiantz, A., Haenni, A. L., and RajBhandary, U. L., 1977, Studies on the sequence of the 3′-terminal region of turnip yellow mosaic virus RNA, Eur. J. Biochem. 72: 465.PubMedGoogle Scholar
  360. Silverman, P. M., Mobach, H. W., and Valentine, R. C., 1967, Sex hair (F pili) mutants of E, coli, Biochem. Biophys. Res. Commun. 27: 412.PubMedGoogle Scholar
  361. Sinha, N. K., Enger, M. D., and Kaesberg, P., 1965a, Comparison of the pancreatic ribonuclease digestion products of R17 viral RNA and M12 viral RNA, J. Mol. Biol. 12: 299.PubMedGoogle Scholar
  362. Sinha, N. K., Fujimura, R. K., and Kaesberg, P., 1965b, Ribonuclease digestion of R17 viral RNA, J. Mol. Biol. 11: 84.PubMedGoogle Scholar
  363. Sinsheimer, R. L., 1970, The life cycle of a single-stranded DNA virus (0X174), in: The Harvey Lectures, Series 64, p. 69, Academic Press, New York.Google Scholar
  364. Siegers, H., and Fiers, W., 1972a, Bacteriophage MS2 RNA and Escherichia coli 23 S ribosomal RNA have a similar conformation after reaction with formaldehyde at low pn, FEBS Lett. IVA11.Google Scholar
  365. Siegers, H., and Fiers, W., 1911b. Studies on the bacteriophage MS2. XXII. Conformation of MS2 RNA in acid medium, Biopolymers 12: 2007.Google Scholar
  366. Siegers, H., and Fiers, W., 1972c, Studies on the bacteriophage MS2. XXIII. Fixation of the MS2 RNA acid structure by formaldehyde, Biopolymers 12: 2023.Google Scholar
  367. Siegers, H., Clauwaert, J., and Fiers, W., 1973, Studies on the bacteriophage MS2. XXIV. Hydrodynamic properties of the native and acid MS2 RNA structures, Biopolymers 12: 2033.Google Scholar
  368. Southern, E. M., 1974, An improved method for transferring nucleotides from electrophoresis strips to thin layers of ion-exchange cellulose. Anal. Biochem. 62: 317.PubMedGoogle Scholar
  369. Southern, E. M., and Mitchell, A. R., 1971, Chromatography of nucleic acid digests on thin layers of cellulose impregnated with polyethyleneimine, Biochem. J. 123: 613.PubMedGoogle Scholar
  370. Spahr, P. F., and Gesteland, R. F., 1968, Specific cleavage of bacteriophage R17 RNA by an endonuclease isolated from E. coli MRE-600, Proc. Natl. Acad. Sci. USA 59: 876.PubMedGoogle Scholar
  371. Spahr, P. F., Farber, M., and Gesteland, R. F., 1969, Binding site on R17 RNA for coat protein. Nature (London) 222: 455.Google Scholar
  372. Spahr, G., Mirault, M.-E., Imaizumi, T., and Scherrer, K., 1976, Molecular-weight determination of animal-cell RNA by electrophoresis in formamide under fully denaturing conditions on exponential Polyacrylamide gels, Eur. J. Biochem. 62: 313.Google Scholar
  373. Sprague, K. U., and Steitz, J. A., 1975, The 3′-terminal oligonucleotide of E. coli 16 S ribosomal RNA: The sequence in both wild-type and R Nase III cells is complementary to the polypurine tracts common to mRNA initiator regions. Nucleic Acids Res. 2: 787.Google Scholar
  374. Sprague, K. U., Steitz, J. A., Grenley, R. M., and Stocking, C. E., 1977, 3′-Terminal sequence of 16 S rRNA do not explain translational specificity differences between E. coli and B. stearothermophilus ribosomes, Nature (London) 267: 462.Google Scholar
  375. Staehelin, M., 1959, Deactivation of virus nucleic acid with glyoxal derivatives, Biochim. Biophys. Acta 31: 448.PubMedGoogle Scholar
  376. Stanley, W. B., Jr., Salas, M., Wahba, A. J., and Ochoa, S., 1966, Translation of the genetic message: Factors involved in the initiation of protein synthesis, Proc. Natl. Acad. Sci. USA 56: 290.PubMedGoogle Scholar
  377. Staples, D. H., and Hindley, J., 1971, Ribosome binding site of Qß RNA polymerase cistron, Nature (London) New Biol. 234: 211.Google Scholar
  378. Staples, D. H., Hindley, J., Billeter, M. A., and Weissmann, C., 1971, Localization of Qß maturation cistron ribosome binding site. Nature (London) New. Biol. 234: 202.Google Scholar
  379. Steege, D. A., 1977, 5′-terminal nucleotide sequence of Escherichia coli lactose repressor mRNA: Features of translational initiation and reinitiation sites, Proc. Natl. Acad. Sci. USA 74: 4163.PubMedGoogle Scholar
  380. Steinschneider, A., and Fraenkel-Conrat, H., 1966, Studies of nucleotide sequences in tobacco mosaic virus ribonucleic acid. IV. Use of aniline in stepwise degradation. Biochemistry 5: 2735.PubMedGoogle Scholar
  381. Steitz, J. A., 1969, Polypeptide chain initiation: Nucleotide sequences of the three ribosomal binding sites in bacteriophage R17 RNA, Nature (London) 224: 957.Google Scholar
  382. Steitz, J. A., 1972, Oligonucleotide sequences of replicase initiation site in RNA, Nature (London) New Biol. 236: 71.Google Scholar
  383. Steitz, J. A., 1912a. Specific recognition of non-initiated regions in RNA bacteriophage messengers by ribosomes of Bacillus stearothermophilus, J. Mol. Biol. 73: 1.Google Scholar
  384. Steitz, J. A., 1973a, Discriminatory ribosome rebinding of isolated regions of protein synthesis initiation from the ribonucleic acid of bacteriophage R17, Proc. Natl. Acad. Sci. USA 70: 2605.PubMedGoogle Scholar
  385. Steitz, J. A., 1974, Specific recognition of the isolated R17 replicase initiator region by R17 coat protein. Nature (London) 248: 223.Google Scholar
  386. Steitz, J. A., 1979, Genetic signals and nucleotide sequences in messenger RNA, in: Biological Regulation and Development, Vol. 1: Gene Expression ( R. Goldberger, ed.), p. 349, Plenum Press, New York.Google Scholar
  387. Steitz, J. A., and Jakes, K., 1975, How ribosomes select initiator regions in mRNA: Base pair formation between the 3′ terminus of 16 S rRNA and the mRNA during initiation of protein synthesis in Escherichia coli, Proc. Natl. Acad. Sci. USA 72: 4734.PubMedGoogle Scholar
  388. Steitz, J. A., and Steege, D. A., 1977, Characterization of two mRNA-rRNA complexes implicated in the initiation of protein biosynthesis, Mol. Biol. 114: 545.Google Scholar
  389. Steitz, J. A., Sprague, K. U., Steege, D. A., Yuan, R. C., Laughrea, M., Moore, P. B., and Wahba, A. J., 1977, RNA-RNA and protein-RNA interactions during the initiation of protein synthesis. In: Symposium on Nucleic Acid-Protein Recognition ( R. Vogel, ed.), p. 491, Academic, New York.Google Scholar
  390. Stent, G. S., 1964, The operon: On its third anniversary, Science 144: 816.PubMedGoogle Scholar
  391. Stoll, E., Wilson, K. J., Reiser, J., and Weissmann, C., 1911a, Revised amino acid sequence of Qfi coat protein between positions 1 and 60, J. Biol. Chem. 252: 990.Google Scholar
  392. Stoll, E., Wilson, J., and Weissmann, C., 1911b. The revised amino-acid sequence of coat protein, Experientia 32: 813.Google Scholar
  393. Strauss, J. H., Jr., and Sinsheimer, R. L., 1963, Purification and properties of bacteriophage MS2 and of its ribonucleic acid, J. Mol. Biol. 7: 43.PubMedGoogle Scholar
  394. Strauss, J. H., Jr., and Sinsheimer, R. L., 1967, Characterization of an infectivity assay for the ribonucleic acid of bacteriophage MS2, J. Virol. 1: 711.PubMedGoogle Scholar
  395. Straus, J. H., and Sinsheimer, R. L., 1968, Initial kinetics of degradation of MS2 ribonucleic acid by ribonuclease, heat, and alkali and the presence of configurational restraints in the ribonucleic acid, J. Mol. Biol. 34: 453.Google Scholar
  396. Strauss, J. H., Jr., Kelly, R. B., and Sinsheimer, R. L., 1968, Denaturation of RNA with dimethyl sulfoxide, Biopolymers 6: 793.PubMedGoogle Scholar
  397. Stubbs, G., Warren, S., and Holmes, K., 1977, Structure of RNA and RNA binding site in tobacco mosaic virus from 4-A map calculated from X-ray fibre diagrams. Nature (London) 267: 216.Google Scholar
  398. Sugiyama, T., 1965, 5′-Linked end group of RNA from bacteriophage MS2, J. Mol. Biol. 11: 856.PubMedGoogle Scholar
  399. Sugiyama, T., 1971, Interaction of MS2 coat protein with MS2 RNA, Recent Progr. Microbiol. 10: 296.Google Scholar
  400. Sugiyama, T., and Nakada, D., 1967, Control of translation of MS2 RNA cistrons by MS2 coat protein, Proc. Natl. Acad. Sci. USA 57: 1744.PubMedGoogle Scholar
  401. Sugiyama, T., and Nakada, D., 1968, Translational control of bacteriophage MS2 RNA cistrons by MS2 coat protein: Polyacrylamide gel electrophoresis analysis of proteins synthesized in vitro, J. Mol. Biol. 31: 431.PubMedGoogle Scholar
  402. Sugiyama, T., Hebert, R. R., and Hartman, K. A., 1967, Ribonucleoprotein complexes formed between bacteriophage MS2 RNA and MS2 protein in vitro, J. Mol. Biol. 25: 455.PubMedGoogle Scholar
  403. Sumper, M., and Luce, R., 1975, Evidence for de novo production of self-replicating and environmentally adapted RNA structures by bacteriophage Qß replicase, Proc. Natl. Acad. Sci. USA 72: 162.PubMedGoogle Scholar
  404. Szekely, M., and Sanger, F., 1969, Use of polynucleotide kinase in fingerprinting non-radioactive nucleic acids, J. Mol. Biol. 43: 607.PubMedGoogle Scholar
  405. Szer, W., Hermoso, J. M., and Leffler, S., 1975, Ribosomal protein SI and polypeptide chain initiation in bacteria, Proc. Natl. Acad. Sci. USA 72: 2325.PubMedGoogle Scholar
  406. Takanami, M., 1966, The 5′-terminus of E. coli ribosomal RNA and f2 bacteriophage RNA, Cold Spring Harbor Symp. Quant. Biol. 31: 611.Google Scholar
  407. Takanami, M., Yan, Y., and Jukes, T. H., 1965, Studies on the site of ribosomal binding of f2 bacteriophage RNA, J. Mol. Biol. 12: 761.PubMedGoogle Scholar
  408. Taniguchi, T., and Weissmann, C., 1978, Site-directed mutations in the initiator region of the bacteriophage Qß coat cistron and their effect on ribosome binding, J. Mol. Biol. 118: 533.Google Scholar
  409. Taniguchi, T., Palmieri, M., and Weissmann, C., 1978, Qß DNA-containing hybrid plasmids giving rise to Qß phage formation in the bacterial host. Nature (London) 274: 223.Google Scholar
  410. Thirion, J.-P., and Kaesberg, P., 1968a, The pyrimidine catalogs of M12 and R17 ribonucleic acids, J. Mol. Biol. 33: 379.PubMedGoogle Scholar
  411. Thirion, J.-P., and Kaesberg, P., 1968b, Sequence determination of oligonucleotides obtained from pancreatic ribonuclease digests of Ml2 and R17 RNAs, Biochim. Biophys. Acta 161: 247.PubMedGoogle Scholar
  412. Thirion, J.-P., and Kaesberg, P., 1970, Base sequence of polypurine regions of the RNAs of bacteriophages R17 and M12, J. Mol. Biol. 47: 193.PubMedGoogle Scholar
  413. Thomas, C. J., Jr., and Hartman, K. A., 1973, Raman studies of nucleic acids. VIII. Estimation of RNA secondary structure from Raman scattering by phosphate- group vibrations, Biochim. Biophys. Acta 312: 311.PubMedGoogle Scholar
  414. Thomas, C. J., Jr., Prescott, B., McDonald-Ordzie, P. E., and Hartman, K. A., 1976, Studies of virus structure by laser-Raman spectroscopy, J. Mol. Biol. 102: 103.PubMedGoogle Scholar
  415. Tinoco, I., Jr., Uhlenbeck, O. C., and Levine, M. D., 1971, Estimation of secondary structure in ribonucleic acids. Nature (London) 230: 362.Google Scholar
  416. Tinoco, I., Jr., Borer, P. N., Dengler, B., Levine, M. D., Uhlenbeck, O. C., Crothers, D. M., and Gralla, J., 1973, Improved estimation of secondary structure in ribonucleic acids, Nature (London) New Biol. 246: 40.Google Scholar
  417. Tooze, J., and Weber, K., 1967, Isolation and characterization of amber mutants of bacteriophage R17, J. Mol. Biol. 28: 311.PubMedGoogle Scholar
  418. Truden, J. L., and Franklin, R. M., 1972, Polysomal localization of R17 bacteriophage-specific protein synthesis, J. Virol. 9: 75.PubMedGoogle Scholar
  419. Turchinsky, M. F., Musova, K. S., and Budowsky, E. I., 1974, Conversion of non-covalent interactions in nucleoproteins into covalent bonds: Bisulfide-induced formation of polynucleotide-protein crosslinks in MS2 bacteriophage virions, FEBS Lett. 38: 304.PubMedGoogle Scholar
  420. Uhlenbeck, O. C., Borer, P. N., Dengler, B., and Tinoco, I., Jr., 1973, Stability of RNA hairpin loops: Ag-Cm-Ue, J. Mol. Biol 73: 483.PubMedGoogle Scholar
  421. Van Assche, W., and van Montagu, M., 1974, Isolation of acidic coat mutants of the RNA bacteriophage MS2 by use of polyacrylamide gel electrophoresis. Arch. Intern Physiol. Biochim. 82: 778.Google Scholar
  422. Van Assche, W., Vandekerckhove, J., Gielen, J., and van Montagu, M., 1972, Anti-serum-resistant mutants of the RNA bacteriophage MS2, Arch. Intern. Physiol. Biochim. 80: 410.Google Scholar
  423. Van Assche, W., Vandekerckhove, J., and van Montagu, M., 1974, Mutation sites in the coat-protein gene of bacteriophage MS2, Arch. Intern. Physiol. Biochim. 82: 1020.Google Scholar
  424. Vandamme, E., Remaut, E., van Montagu, M., and Fiers, W., 1972, Studies on the bacteriophage MS2. XVII. Suppressor-sensitive mutants of the A-protein cistron, Mol. Gen. Genet. 117: 219.PubMedGoogle Scholar
  425. Vandekerckhove, J., 1972, Bepaling van de aminozuursekwenties van wild-typeen mutant manteleiwit bij de bacteriofaag MS2, Ph.D. dissertation. University of Ghent, Belgium.Google Scholar
  426. Vandekerckhove, J. S., and van Montagu, M., 1977, Sequence of the A-protein of coliphage MS2, J. Biol. Chem. 252: 7773.PubMedGoogle Scholar
  427. Vandekerckhove, J., Gielen, J., Lenaerts, A., van Assche, W., and van Montagu, M., 1971, Difference between the nitrous acid-induced and the hydroxylamine-induced amber mutants in the RNA bacteriophage MS2. Arch. Intern. Physiol. Biochim. 79: 636.Google Scholar
  428. Vandekerckhove, J. S., Nolf, F., and van Montagu, M., 1973, The amino acid sequence at the carboxyl terminus of the maturation protein of bacteriophage MS2, Nature (London) New Biol. 241: 102.Google Scholar
  429. Vandekerckhove, J., van Assche, W., Vingerhoed, J.-P., and van Montagu, M., 1975, Approaches to the determination of the protein configuration in particles of bacteriophage MS2, Abstr. 3rd Int. Congr. Virol., Madrid.Google Scholar
  430. Vandenberghe, A., van Styvendaele, B., and Fiers, W., 1969, Studies on the bacteriophage MS2. VI. The nucleoside 5′-triphosphate end groups of the replicative intermediate and the replicative form, Eur. J. Biochem. 7: 174.PubMedGoogle Scholar
  431. Vandenberghe, A., Min Jou, W., and Fiers, W., 1975, 3′-Terminal nucleotide sequence (n = 361) of bacteriophage MS2 RNA, Proc. Natl. Acad. Sci. USA 72: 2559.Google Scholar
  432. van Dieijen, G., van Knippenberg, P., and van Duin, J., 1976, The specific role of ribosomal protein SI in the recognition of native phage RNA, Eur. J. Biochem. 64: 511.PubMedGoogle Scholar
  433. van Dieijen, G., van Knippenberg, P. H., van Duin, J., Koekman, B., and Pouwels, P. H., 1977, The effect of the ribosomal protein SI from Escherichia coli on the synthesis in vitro of bacterial-, DNA phage- and RNA phage proteins, Mol. Gen. Genet. 153: 75.PubMedGoogle Scholar
  434. van Duin, J., Kurland, C. G., Dondon, J., and Grunberg-Manago, M., 1975, Near neighbors of IF3 bound to 30 S ribosomal subunits, FEBS Lett. 59: 287.PubMedGoogle Scholar
  435. van Etten, J. L., Vidaver, A. K., Koski, R. K., and Burnett, J. P., 1974, Base composition and hybridization studies of the three double-stranded RNA segments of bacteriophage 06,Virol. 13: 1254.Google Scholar
  436. van Montagu, M., 1968, Studies with amber and UGA mutants of the RNA phage MS2, Arch. Intern. Physiol. Biochim. 76: 393.Google Scholar
  437. van Montagu, M., Leurs, C., Brächet, P., and Thomas, R., 1967, A set of amber mutants of bacteriophages X and MS2 suitable for the identification of suppressors, Mutat. Res. 4: 698.PubMedGoogle Scholar
  438. Vasquez, C., Granboulan, N., and Franklin, R. M., 1966, Structure of the ribonucleic acid bacteriophage R17, Bacteriol. 92: 1779.Google Scholar
  439. Verbraeken, E., and Fiers, W., 1972a, Studies on the bacteriophage MS2. XX. Expansion of the virion in low salt. Virology 50: 690.PubMedGoogle Scholar
  440. Verbraeken, E., and Fiers, W., 1972b, Further evidence on the role of the A-protein in bacteriophage MS2 particles, FEES Lett. 28: 89.Google Scholar
  441. Vidaver, A. K., Koski, R. K., and van Etten, J. L., 1973, Bacteriophage 06: A lipid-containing virus of Pseudomonas phaseolicola, J. Virol. 11: 799.PubMedGoogle Scholar
  442. Vinuela, E., Algranati, I. D., and Ochoa, S., 1967, Synthesis of virus-specific proteins in Escherichia coli infected with the RNA bacteriophage MS2, Eur. J. Biochem. 1: 3.PubMedGoogle Scholar
  443. Vinuela, E., Algraniti, I. D., Feix, G., Garwes, D., Weissmann, C., and Ochoa, S., 1968, Virus-specific proteins in Escherichia coli infected with some amber mutants of phage MS2, Biochim. Biophys. Acta 155: 558.PubMedGoogle Scholar
  444. Volckaert, G., and Fiers, W., 1973, Studies on the bacteriophage MS2: G-U-G as the initiation codon of the A-protein cistron, FEBS Lett. 35: 91.PubMedGoogle Scholar
  445. Volckaert, G., and Fiers, W., 1974, A simple and highly sensitive method for sequence determination of 32P-labeled oligonucleotides. Anal. Biochem. 62: 573.PubMedGoogle Scholar
  446. Volckaert, G., and Fiers, W., 1977, Micro thin-layer techniques for rapid sequence analysis of 32P-labeled RNA: Double digestion and pancreatic ribonuclease analysis. Anal. Biochem. 83: 228.PubMedGoogle Scholar
  447. Volckaert, G., Min Jou, W., and Fiers, W., 1976, Analysis of 32P-labeled bacteriophage MS2-RNA by a mini-fingerprinting procedure. Anal. Biochem. 72: 433.PubMedGoogle Scholar
  448. Vollenweider, H. J., Koller, T. H., Weber, H., and Weissmann, C., 1976, Physical mapping Qß RNA, J. Mol. Biol. 101: 367.PubMedGoogle Scholar
  449. Wahba, A. J., Miller, M. J., Niveleau, A., Landers, T. A., Carmichael, G., Weber, K., Hawley, D. A., and Slobin, L. J., 1974, Subunit I of Qß replicase and 30 S ribosomal protein SI of Escherichia coli, J. Biol. Chem. 249: 3314.PubMedGoogle Scholar
  450. Walz, A., Pirrotta, U., and Ineichen, K., 1976, X Repressor regulates the switch between PR and PRM promoters. Nature (London) 262: 665.Google Scholar
  451. Ward, R., Strand, M., and Valentine, R. C., 1968, Translational repression of f2 protein synthesis, Biochem. Biophys. Res. Commun. 30: 310.PubMedGoogle Scholar
  452. Watanabe, H., and Watanabe, M., 1970, Comparative biology of five RNA phages, R23, f2, Qß, R34, and R40, Can. J. Microbiol. 16: 859.PubMedGoogle Scholar
  453. Watanabe, L, Miyake, T., Sakurai, T., Shiba, T., and Ohno, T., 1967a, Isolation and grouping of RNA phages, Proc. Jpn. Acad. 43: 204.Google Scholar
  454. Watanabe, L, Nishihara, T., Kaneko, H., Sakurai, T., and Osawa, S., 1967b, Group characteristics of RNA phages, Proc. Jpn. Acad. 43: 210.Google Scholar
  455. Watanabe, M., and August, J. T., 1968, Identification of guanosine triphosphate on the 5′-terminus of RNA from bacteriophage Qß and R23, Biochemistry 59: 513.Google Scholar
  456. Watanabe, M., Watanabe, H., and August, J. T., 1968, Replication of RNA bacteriophage R23. I. Quantitative aspects of phage RNA and protein synthesis, J. Mol. Biol. 33: 1.PubMedGoogle Scholar
  457. Weber, K., 1967, Amino acid sequence studies on the tryptic peptides of the coat protein of the bacteriophage R17, Biochemistry 6: 3144.PubMedGoogle Scholar
  458. Weber, H., 1976, The binding site for coat protein on bacteriophage Qß RNA, Biochim. Biophys. Acta 418: 175.PubMedGoogle Scholar
  459. Weber, K., and Königsberg, W., 1967, Amino acid sequence of the f2 coat protein, J. Biol. Chem. 242: 3563.Google Scholar
  460. Weber, K., and Königsberg, W., 1975, Proteins of the RNA phage, in: RNA Phages ( N. D. Zinder, ed.), p. 51, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.Google Scholar
  461. Weber, H., and Weissmann, C., 1970, The 3′-termini of bacteriophage Qß plus and minus strands, J. Mol. Biol. 51: 215.PubMedGoogle Scholar
  462. Weber, H., Billeter, M. A., Kahane, S., Weissmann, C., Hindley, J., and Porter, A., 1972, Molecular basis for repressor activity of Qß replicase. Nature (London) 237: 166.Google Scholar
  463. Weber, H., Kamen, R., Meyer, F., and Weissmann, C., 1974, Interactions between Qß replicase and Qß RNA, Experientia 30: 711.Google Scholar
  464. Weiner, A. M., and Weber, K., 1971, Natural read-through at the UGA termination signal of Qß coat protein cistron, Nature (London) New Biol. 234: 206.Google Scholar
  465. Weiner, A. M., and Weber, K., 1973, A signal UGA codon functions as a natural termination signal in the coliphage Qß coat protein cistron, J. Mol. Biol. 80: 837.PubMedGoogle Scholar
  466. Weiner, A. M., Piatt, T., and Weber, K., 1972, Amino terminal sequence analysis of protein purified on a nanomole scale by gel electrophoresis, J. Biol. Chem. 247: 3242.PubMedGoogle Scholar
  467. Weissmann, C., and Ochoa, S., 1967, Replication of phage RNA, Progr. Nucl. Acid. Res. Mol. Biol. 6: 353.Google Scholar
  468. Weissmann, C., Billeter, M. A., Goodman, H. M., Hindley, J., and Weber, H., 1973, Structure and function of phage RNA, Annu. Rev. Biochem. 42: 303.PubMedGoogle Scholar
  469. Weith, H. L., and Gilham, P. T., 1967, Structural analysis of polynucleotides by sequential base elimination: The sequence of the terminal decanucleotide fragment of the ribonucleic acid from bacteriophage f2, Am. Chem. Soc. 89: 5473.Google Scholar
  470. Weith, H. L., and Gilham, P. T., 1969, Polynucleotide sequence analysis by sequential base elimination: 3′-Terminus of phage Qß RNA, Science 166: 1004.PubMedGoogle Scholar
  471. Weppelman, R. M., and Brinton, C. C., Jr., 1971, The infection of Pseudomonas aeruginosa by RNA pilus phage PP7: The adsorption organelle and the relationship between phage sensitivity and the division cycle, Virology 44: 1.PubMedGoogle Scholar
  472. Wittman-Liebold, B., and Wittman, H. G., 1967, Coat proteins of strains of two RNA viruses: Comparison of their amino acid sequences, Mol. Gen. Genet. 100: 358.Google Scholar
  473. Wong, K., Morgan, A. R., and Paranchych, W., 1974, Controlled cleavage of phage R17 RNA within the virion by treatment with ascorbate and copper (II), Can. J. Biochem. 52: 950.PubMedGoogle Scholar
  474. Wong, K. L., Wong, Y. P., and Kearns, D. R., 1975, Investigation of the thermal unfolding of secondary and tertiary structure in E. coli tMET by high-resolution NMR, Biopolymer 14: 749.Google Scholar
  475. Ysebaert, M., 1975, Nukleotidesekwentiebepaling van een intercistronisch gebied en van segmenten uit de drie genen, leidend tot de volledige struktuuropheldering van bakteriofaag MS2 RNA, Ph.D. dissertation. University of Ghent, Belgium.Google Scholar
  476. Zinder, N. D., 1965, RNA phages, Annu. Rev. Biochem. 33: 455.Google Scholar
  477. Zinder, N. D. (ed.), 1975, RNA Phages, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.Google Scholar
  478. Zinder, N. D., and Cooper, S., 1964, Host-dependent mutants of the bacteriophage f2. I. Isolation and preliminary classification, Virology 23: 152.PubMedGoogle Scholar
  479. Zipper, P., and Folkhard, W., 1975, A small-angle X-ray scattering investigation on the structure of the RNA from bacteriophage MS2, FEES Lett. 56: 283.Google Scholar
  480. Zipper, P., Kratky, O., Herrmann, R., and Hohn, T., 1971, An X-ray small angle study of the bacteriophage fr and R17, Eur. J. Biochem. 18: 1.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1979

Authors and Affiliations

  • Walter Fiers
    • 1
  1. 1.Laboratory of Molecular BiologyUniversity of GhentGhentBelgium

Personalised recommendations