Structure of the RNA of Eukaryotic Viruses

  • H. Fraenkel-Conrat
Part of the Comprehensive Virology book series (CV)


The first natural homodisperse polyribonucleotides to become available for chemical characterization were the virion RNAs of plant viruses and certain animal viruses. The finding that the infectivity of many viruses, first of tobacco mosaic virus, was a property of their RNAs (Fraenkel-Conrat, 1956; Gierer and Schramm, 1956; Fraenkel-Conrat et al., 1957; Colter et al., 1957), and that these thus represented the first pure genes as well as mRNAs to become available, made studies of their nucleotide sequences obviously of great interest. The later and gradual realization that the virions of many other virus families, e. g., the rhabdo-, myxo-, paramyxo- and reoviridae, carried minus-strand or double-stranded RNAs which had to be transcribed before they could serve as messenger did not diminish the intrinsic importance and interest in their nucleotide sequence.


Coat Protein Tobacco Mosaic Virus Cucumber Mosaic Virus Vesicular Stomatitis Virus Rous Sarcoma Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abou Haidar, M., and Hirth, L., 1977, 5’-Terminal structure of tobacco rattle virus RNA: Evidence for polarity of reconstitution, Virology 76: 173.Google Scholar
  2. Banerjee, A. K., and Rhodes, D. P., 1976, 3’-Terminal sequence of vesicular stomatitis virus genome RNA, Biochem. Biophys. Res. Commun. 68: 1387.Google Scholar
  3. Barren, B. G., 1971, Fractionation and sequence analysis of radioactive nucleotides, in: Procedures in Nucleic Acid Research, Vol. 2 ( G. L. Cantoni, and D. R. Davies, eds.), p. 751, Harper and Row, New York.Google Scholar
  4. Beemon, K., and Keith, J., 1977, Localization of N 6-methyladenosine in the Rous sarcoma virus genome, J. Mol. Biol. 113: 165.PubMedCrossRefGoogle Scholar
  5. Beemon, K., Duesberg, P., and Vogt, P., 1974, Evidence for crossing-over between avian tumor viruses based on analysis of viral RNAs, Proc. Natl. Acad. Sci. USA 71: 4254.PubMedCrossRefGoogle Scholar
  6. Bender, W., and Davidson, N., 1976, Mapping of poly(A) sequences in the electron microscope reveals unusual structure of type C oncornavirus RNA molecules. Cell 7: 595.PubMedCrossRefGoogle Scholar
  7. Billeter, M. A., Parsons, J. T., and Coffin, J. M., 1974, The nucleotide sequence complexity of avian tumor virus RNA, Proc. Natl. Acad. Sci. USA 71: 3560.PubMedCrossRefGoogle Scholar
  8. Briand, J.-P., Richards, K. E., Bouley, J. P., Witz, J., and Hirth, L., 1976, Structure of the amino-acid accepting 3-end of high-molecular-weight eggplant mosaic virus RNA, Proc. Natl. Acad. Sci. USA 73: 737.PubMedCrossRefGoogle Scholar
  9. Briand, J.-P., Jonard, G., Guilley, H., Richards, K., and Hirth, L., 1977, Nucleotide sequence (n-159) of the amino-acid-accepting 3’-OH extremity of turnip-yellow- mosaic-virus RNA and the last portion of its coat-protein cistron, Eur. J. Biochem. 72: 453.PubMedCrossRefGoogle Scholar
  10. Briand, J.-P., Keith, G., and Guilley, H., 1978, Nucleotide sequence at the 5’ extremity of TYMV genome RNA, Proc. Natl. Acad. Sci. USA 75: 3168.PubMedCrossRefGoogle Scholar
  11. Brown, F., Newman, J., Stott, J., Porter, A., Frisby, D., Newton, C., Carey, N. and Feller, P., 1974, Poly(C) in animal viral RNAs, Nature (London) 251: 342.CrossRefGoogle Scholar
  12. Brownlee, G. G., and Sanger, F., 1969, Chromatography of 32P-labeled oligonucleotide on thin layers of DEAE-cellulose, Eur. J. Biochem. 11: 395.PubMedCrossRefGoogle Scholar
  13. Brownlee, G. G., Sanger, F., and Barrell, B. G., 1968, The sequence of 5 S ribosomal ribonucleic acid, J. Mol. Biol. 34: 379.PubMedCrossRefGoogle Scholar
  14. Burness, A. T. H., Pardoe, I. U., Duffy, E. M., Bhalla, R. B., and Goldstein, N. O., 1977, The size and location of the poly(A) tract in EMC virus RNA, J. Gen. Virol. 34: 331.PubMedCrossRefGoogle Scholar
  15. Chumakov, K. M., and Agol, V. I., 1976, Poly(C) sequence is located near the 5’-end of encephalomyocarditis virus RNA, Biochem. Biophys. Res. Commun. 71: 551.PubMedCrossRefGoogle Scholar
  16. Clewly, J. P., Bishop, D. H. L., Kang, C.-Y., Coffin, J., Schnitzlein, W. M., Reichmann, M. E., and Shope, R. E., 1977, Oligonucleotide fingerprints of RNA species obtained from Rhabdoviruses belonging to the vesicular stomatitis virus subgroups, J. Virol. 23: 152.Google Scholar
  17. Coffin, J. M., Hageman, T. C., Maxam, A. M., and Haseltine, W. A., 1978, Structure of the genome of Moloney murine leukemia virus: A terminally redundant sequence. Cell 13: 761.PubMedCrossRefGoogle Scholar
  18. Collett, M. S., Dierks, P., Cahill, J. F., Faras, A. J., and Parsons, J. T., 1977, Terminally repeated sequences in the avian sarcoma virus RNA genome, Proc. Natl. Acad. Sci. USA 74: 2389.PubMedCrossRefGoogle Scholar
  19. Colonno, R. J., and Banerjee, A. K., 1976, A unique RNA species involved in initiation of vesicular stomatitis virus RNA transcription in vitro. Cell 8: 197.PubMedCrossRefGoogle Scholar
  20. Colonno, R. J., and Banerjee, A. K., 1978, Complete nucleotide sequence of the leader RNA synthesized in vitro by vesicular stomatitis virus, Cell 15: 93.PubMedCrossRefGoogle Scholar
  21. Colter, J. S., Bird, H. H., Moyer, A. W., and Brown R. A., 1957, Infectivity of ribonucleic acid isolated from virus-infected tissues. Virology 4: 522.PubMedCrossRefGoogle Scholar
  22. Darby, G., and Minson, A. C., 1973, The structure of tobacco rattle virus ribonucleic acids: Common nucleotide sequences in the RNA species, J. Gen. Virol. 21: 285.CrossRefGoogle Scholar
  23. Dasgupta, R., and Kaesberg, P., 1977, Sequence of an oligonucleotide derived from the 3’ end of each of the four brome mosaic viral RNAs, Proc. Natl. Acad. Sci. USA 74: 4900.PubMedCrossRefGoogle Scholar
  24. Dasgupta, R., Shih, D. S., Saris, C., and Kaesberg, P., 1975, Nucleotide sequence of a viral RNA fragment that binds, to eukaryotic ribosomes. Nature (London) 256: 624.CrossRefGoogle Scholar
  25. Dasgupta, R., Harad, F., and Kaesberg, P., 1976, Blocked 5 termini in brome mosaic virus RNA, J. Virol. 18: 260.PubMedGoogle Scholar
  26. Daubert, S. D., Bruening, G., and Najarian, R. C., 1978, Protein blocks the 5’-end of cowpea mosaic virus RNAs, Eur. J. Biochem. 92: 45.PubMedCrossRefGoogle Scholar
  27. Dimock, K., and Stoltzfus, C. M., 1977, Sequence specificity of internal methylation in B77 avian sarcoma virus RNA subunits, Biochemistry 16: 471.PubMedCrossRefGoogle Scholar
  28. Domingo, E., Sabo, D., Taniguchi, T., and Weissmann, C., 1978, Nucleotide sequence heterogeneity of an RNA phage population. Cell 13: 735.PubMedCrossRefGoogle Scholar
  29. Donis-Keller, H., Maxam, A. M., and Gilbert, W., 1977, Mapping adenines, guanines, and pyrimidines in RNA, Nucleic Acids Res. 4: 2527.PubMedCrossRefGoogle Scholar
  30. Dubin, D. T., Stollar, V., Hsuchen, C.-C., Timko, K., and Guild, G. M., 1977, Sindbis virus messenger RNA: The 5-termini and methylated residues of 26 and 42 S RNA, Virology 77: 457.PubMedCrossRefGoogle Scholar
  31. Duesberg, P. H., and Vogt, P. K., 1973, Gel electrophoresis of avian leukosis and sarcoma viral RNA in formamide: Comparison with other viral and cellular RNA species, J. Virol. 12: 594.PubMedGoogle Scholar
  32. El Manna, M., and Bruening, G., 1973, Polyadenylate sequences in the ribonucleic acids of cowpea mosaic virus. Virology 56: 198.CrossRefGoogle Scholar
  33. Erikson, R. L., Erikson, E., and Walker, T. A., 1971, The identification of the 3’- hydroxyl nucleoside terminus of avian myeloblastosis virus RNA, Virology 45: 527.PubMedCrossRefGoogle Scholar
  34. Faust, M., Hastings, K. E. M., and Millward, S., 1975, m7G5 ppp5 GmpCpUp at the 5’ terminus of reovirus messenger RNA, Nucleic Acids Res. 2: 1329.Google Scholar
  35. Flanegan, J. B., Pettersson, R. F., Ambros, V., Hewlett, M. J., and Baltimore, D., 1977, Covalent linkage of a protein to a defined nucleotide sequence at the 5’-terminus of virion and replicative intermediate RNAs of polio virus, Proc. Natl. Acad. Sci. USA 74: 961.PubMedCrossRefGoogle Scholar
  36. Fraenkel-Conrat, H., 1956, The role of the nucleic acid in the reconstitution of active tobacco mosaic virus, J. Am. Chem. Soc. 78: 882.CrossRefGoogle Scholar
  37. Fraenkel-Conrat, H., and Singer, B., 1962, The absence of phosphorylated chain ends in tobacco mosaic virus ribonucleic acid. Biochemistry 1: 120.PubMedCrossRefGoogle Scholar
  38. Fraenkel-Conrat, H., Singer, B., and Williams, R. C., 1957, Infectivity of viral nucleic acid, Biochim. Biophys. Acta 25: 87.PubMedCrossRefGoogle Scholar
  39. Frisby, D., 1977, Oligonucleotide mapping of non-radioactive virus and messenger RNAs, Nucleic Acids Res. 4: 2975.PubMedCrossRefGoogle Scholar
  40. Frisby, D. P., Newton, C., Carey, N. H., and Fellner, P., 1976, Oligonucleotide mapping of Picornavirus RNAs by two-dimensional electrophoresis. Virology 71: 379.PubMedCrossRefGoogle Scholar
  41. Furuichi, Y., and Miura, K.-L, 1975, A blocked structure at the 5’ terminus of mRNA from cytoplasmic polyhedrosis virus. Nature (London) 253: 374.CrossRefGoogle Scholar
  42. Furuichi, Y., Morgan, M., Muthukrishnan, and Shatkin, A. J., 1975û, Reovirus messenger RNA contains a methylated, blocked 5’-terminal structure: m7G(5′)ppp(5′)Gm pCp-, Proc. Natl. Acad. Sci. USA 72: 362.Google Scholar
  43. Furuichi, Y., Shatkin, A. J., Stavnezer, E., and Bishop, J. M., 1975¿>, Blocked, methylated 5′-terminal sequence in avian sarcoma virus RNA, Nature (London) 257: 618.Google Scholar
  44. Garfin, D. E., and Mándeles, S., 1975, Sequences of oligonucleotides prepared from tobacco mosaic virus ribonucleic acid. Virology 64: 388.PubMedCrossRefGoogle Scholar
  45. Giegé, R., Briand, J.-P., Mengual, R., Ebel, J.-P., and Hirth, L., 1978, Valylation of the two RNA components of turnip-yellow mosaic virus and specificity of the tRNA amino acylation reaction, Eur. J. Biochem. 84: 251.PubMedCrossRefGoogle Scholar
  46. Gierer, A., and Schramm, G., 1956, Die Infektiosität der Ribonukleinsäure des Tabak-mosaikvirus, Z. Naturforsch. llb:138 also Nature (London) 177:702].Google Scholar
  47. Gilham, P. T., 1962, An addition reaction specific for uridine and guanosine nucleotides and its application to the modification of ribonuclease action, Am. Chem. Soc. 84: 687.CrossRefGoogle Scholar
  48. Giron, M.-L., Logeât, F., Hanania, N., Fossar, N., and Huppert, J., 1976, Size of the poly(A) sequences in encephalomyocarditis virus RNA, Intervirology 6: 367.CrossRefGoogle Scholar
  49. Glitz, D. G., Bradley, A., and Fraenkel-Conrat, H., 1968, Nucleotide sequences at the 5’-linked ends of viral RNAs, Biochim. Biophys. Acta 161: 1.PubMedCrossRefGoogle Scholar
  50. Gross, H. J., Domdey, H., and Sanger, H. L., 1977, Comparative oligonucleotide fingerprints of three plant viroids. Nucleic Acids Res. 4: 2021.PubMedCrossRefGoogle Scholar
  51. Gross, H. J., Domdey, H., Lossow, C., Jank, P., Raba, M., Alberty, H., and Sänger, H. L., 1978, Nucleotide sequence and secondary structure of potato spindle tuber viroid. Nature (London) 273: 203.CrossRefGoogle Scholar
  52. Gugerii, P., Darby, G., and Minson, A. C., 1978, The structure of tobacco rattle virus ribonucleic acids: Comparison of large oligonucleotides derived from the 3’ ends, J. Gen, Virol. 38: 273.CrossRefGoogle Scholar
  53. Guilley, H., and Briand, J. P., 1978, Nucleotide sequence of turnip yellow mosaic virus coat protein messenger RNA, Cell 15: 113.PubMedCrossRefGoogle Scholar
  54. Guilley, H., Jonard, G., and Hirth, L., 1975a, Sequence of 71 nucleotides at the 3′-end of tobacco mosaic virus RNA, Proc. Natl. Acad. Sci. USA 72: 864.PubMedCrossRefGoogle Scholar
  55. Guilley, H., Jonard, G., Richards, K. E., and Hirth, L., 1975¿?, Sequence of a specifically encapsidated RNA fragment originating from the tobacco-mosaic-virus coat- protein cistron, Eur. J. Biochem. 54: 135.Google Scholar
  56. Guilley, H., Jonard, G., Richards, K. E., and Hirth, L., 1975c, Observations concerning the sequence of two additional specifically encapsidated RNA fragments originating from the tobacco-mosaic-virus coat-protein cistron, Eur. J. Biochem, 54: 145.PubMedCrossRefGoogle Scholar
  57. Harris, T. J. R., and Brown, F., 1976, The location of the poly(C) tract in the RNA of foot-and-mouth disease virus, J. Gen. Virol. 33: 493.PubMedCrossRefGoogle Scholar
  58. Haseltine, W. A., and Kleid, D. G., 1978, A method for classification of 5′ termini of retroviruses. Nature (London) 273: 358.CrossRefGoogle Scholar
  59. Haseltine, W. A., Maxam, A. M., and Gilbert, W., 1977, Rous sarcoma virus genome is terminally redundant: The 5’ sequence, Proc. Natl. Acad. Sci. USA 74: 989.PubMedCrossRefGoogle Scholar
  60. Hefti, E., and Bishop, D. H. L., 1975, The 5′ nucleotide sequence of vesicular stomatitis viral RNA,y. Virol. 15: 90.Google Scholar
  61. Hefti, E., Bishop, D. H. L., Dubin, D. T., and Stollar, V., 1976, 5′ Nucleotide sequence of Sindbis viral RNA, J. Virol. 17: 149.Google Scholar
  62. Horst, J., Fraenkel-Conrat, H., and Mándeles, S., 1971, Sequence heterogeneity at both ends of STNV RNA, Biochemistry 10: 4748.PubMedCrossRefGoogle Scholar
  63. Horst, J., Content, J., Mándeles, S., Fraenkel-Conrat, H., and Duesberg, P., 1972a, Distinct oligonucleotide patterns of distinct influenza virus RNAs, J. Mol. Biol. 69: 209.PubMedCrossRefGoogle Scholar
  64. Horst, J., Keith, J., and Fraenkel-Conrat, H., \912b. Characteristic two-dimensional patterns of enzymatic digests of oncorna and other viral RNAs, Nature (London) New Biol. 240: 105.Google Scholar
  65. Hruby, D. E., and Roberts, W. K., 1978, Encephalomyocarditis virus RNA HI. Presence of a genome-associated protein, J. Virol. 25: 413.PubMedGoogle Scholar
  66. Ikegami, M., and Fraenkel-Conrat, H., 1978, RNA-dependent RNA polymerase of tobacco plants, Proc. Natl. Acad. Sci. USA 75: 2122.PubMedCrossRefGoogle Scholar
  67. Jonard, G., Richards, K. E., Guilley, H., and Hirth, L., 1977, Sequence from the assembly nucleation region of TMV RNA, Cell 11: 483.PubMedCrossRefGoogle Scholar
  68. Jonard, G., Richards, K., Mohier, E., and Gerlinger, P., 1978, Nucleotide sequence at the 5’ extremity of tobacco-mosaic-virus RNA 2: The coding region (nucleotides 69-236), Eur. J. Biochem. 84: 521.PubMedCrossRefGoogle Scholar
  69. Kamen, R., 1969, Infectivity of bacteriophage R17 RNA after sequential removal of 3′ terminal nucleotides. Nature (London) 221: 321.CrossRefGoogle Scholar
  70. Kaper, J. M., Tousignant, M. E., and Lot, H., 1976, A low-molecular-weight replicating RNA associated with a divided genome plant virus: Defective or satellite RNA? Biochem. Biophys. Res. Commun. 72: 1237.PubMedGoogle Scholar
  71. Keene, J. D., Rosenberg, M., and Lazzarini, R. A., 1977, Characterization of the 3’ terminus of RNA isolated from vesicular stomatitis virus and from its defective interfering particles, Proc. Natl. Acad. Sci. USA 74: 1353.PubMedCrossRefGoogle Scholar
  72. Keene, J. D., Schubert, M., Lazzarini, R. A., and Rosenberg, M., 1978, Nucleotide sequence homology at the 3′ termini of RNA from vesicular stomatitis virus and its defective interfering particles, Proc. Natl. Acad. Sci. USA 75: 3225.PubMedCrossRefGoogle Scholar
  73. Keith, J., and Fraenkel-Conrat, H., 1975a, Tobacco mosaic virus RNA carries 5’- terminal triphosphorylated guanosine blocked by 5′-linked 7-methylguanosine, FEBS Lett. 57: 31.PubMedCrossRefGoogle Scholar
  74. Keith, J., and Fraenkel-Conrat, H., 1975¿?, Identification of the 5′ end of Rous sarcoma virus RNA, Proc. Natl. Acad. Sci. USA 72: 3347.Google Scholar
  75. Keith, J., Gleason, M., and Fraenkel-Conrat, H., 1974, Characterization of the end groups of RNA of Rous sarcoma virus, Proc. Natl. Acad. Sci. USA 71: 4371.PubMedCrossRefGoogle Scholar
  76. Klein, C., Fritsch, C., Briand, J. P., Richards, K. E., Jonard, G., and Hirth, L., 1976, Physical and functional heterogeneity in TYMV RNA: Evidence for the existence of an independent messenger coding for coat protein. Nucleic Acids Res. 3: 3043.PubMedCrossRefGoogle Scholar
  77. Klootwijk, J., Klein, I., Zabel, P., and van Kämmen, A., 1977, Cowpea mosaic virus RNAs have neither mGpppN... nor mono-, di-, or triphosphates at their 5’ ends, Cell 11: 73.PubMedCrossRefGoogle Scholar
  78. Koper-Zwarthoff, E. C., Lockard, R. E., Alzner-deWeerd, B., RajBhandary, U. L., and Bol. J. F., 1977, Nucleotide sequence of 5’ terminus of alfalfa mosaic virus RNA 4 leading into coat protein cistron, Proc. Natl. Acad. Sei. USA 74: 5504.CrossRefGoogle Scholar
  79. Lai, M. M. C., and Duesberg, P. H., 1972, Adenylic acid-rich sequence in RNAs of Rous sarcoma virus and Rauscher mouse leukaemia virus. Nature (London) 235: 383.CrossRefGoogle Scholar
  80. Lee, Y. F., and Wimmer, E., 1976, E., 1976, “Fingerprinting” high molecular weight RNA by two-dimensional gel electrophoresis: Application to poliovirus RNA, Nucleic Acids Res.3: 1647Google Scholar
  81. Lee, Y. F., Nomoto, A., Detjen, B. M., and Wimmer, E., 1977, A protein covalently linked to poliovirus genome RNA, Proc. Natl. Acad. Sci. USA 74: 59.PubMedCrossRefGoogle Scholar
  82. Leppert, M., and Kolakofsky, D., 1978, 5’-Terminus of defective and nondefective Sendai viral genomes if pppAp, J. Virol. 25: 421.Google Scholar
  83. Leppert, M., Kort, L., and Kolakofsky, D., 1977, Further characterization of Sendai virus Dl-RNAs: A model for their generation. Cell 12: 539.PubMedCrossRefGoogle Scholar
  84. Lesnaw, J. A., and Reichmann, M. E., 1970, Identity of the 5’-terminal RNA nucleotide sequence of the satellite tobacco necrosis virus and its helper virus: Possible role of the 5’-terminus in the recognition by virus-specific RNA replicase, Proc. Natl. Acad. Sci. USA 66: 140.PubMedCrossRefGoogle Scholar
  85. Leung, D. W., Gilbert, C. W., Smith, R. E., Sasavage, N. L., and Clark, J. M., Jr., 1976, Translation of satellite tobacco necrosis virus ribonucleic acid by an in vitro system from wheat germ. Biochemistry 15: 4943.PubMedCrossRefGoogle Scholar
  86. Lewandowski, L. J., Content, J., and Leppla, S. H., 1971, Characterization of the subunit structure of the ribonucleic acid genome of influenza virus, J. Virol. 8: 701.PubMedGoogle Scholar
  87. Lot, H., Jonard, G., and Richards, K. E., 1977, Cucumber mosaic virus RNA t: Partial characterization and evidence for no large sequence homologies with genomic RNAs, FEBS Lett. 80: 395.PubMedCrossRefGoogle Scholar
  88. MacNaughton, M. R., and Madge, M. H., 1978, The genome of human Coronavirus strain 229E, J. Gen. Virol. 39: 497.PubMedCrossRefGoogle Scholar
  89. Mándeles, S., 1967, Base sequence at the 5’-linked terminus of TMV-RNA, J. Biol. Chem. 242: 3103.PubMedGoogle Scholar
  90. Mándeles, S., 1968, Location of unique sequences in TMV-RNA, J. Biol. Chem. 243: 3671.PubMedGoogle Scholar
  91. Mangel, W. F., Delius, H., and Duesberg, P. H., 1974, Structure and molecular weight of the 60-70 S RNA and the 30-40 S RNA of the Rous sarcoma virus, Proc. Natl. Acad. Sci. USA 71: 4541.PubMedCrossRefGoogle Scholar
  92. Maruyama, H. B., Hatanaka, M., and Gilden, R. V., 1971, The 3’-terminal nucleosides of the high molecular weight RNA of C-type viruses, Proc. Natl. Acad. Sci. USA 68: 1999.Google Scholar
  93. Matthews, R. E. F., 1978, Are viroids negative-strand viruses? Nature 276: 850.CrossRefGoogle Scholar
  94. Mazo, A. M., and Kisselev, L. L., 1975, Ribopolynucleotides modified at pyrimidine residues are cleaved selectively by Tz ribonuclease at purine residues, FEBS Lett. 59: 177.PubMedCrossRefGoogle Scholar
  95. Merregaert, J., van Emmelo, J., Devos, R., Porter, A., Fellner, P., and Fiers, W., 1978, The 3’-terminal nucleotide sequence of encephalomyocarditis virus RNA, Eur. J. Biochem. 82: 55.PubMedCrossRefGoogle Scholar
  96. Minson, A. C., and Darby, G., 1973a, 3’-Terminal oligonucleotide fragments of tobacco rattle virus ribonucleic acids, J. Mol. Biol. 77: 337.Google Scholar
  97. Minson, A. C., and Darby, G., 1913b, A study of sequence homology between tobacco rattle virus ribonucleic acids, J. Gen. Virol. 19: 253.CrossRefGoogle Scholar
  98. Moss, B., Keith, J. M., Gershowitz, A., Ritchey, M. B., and Palese, P., 1978, Common sequence at the 5’ ends of the segmented RNA genomes of influenza A and B viruses, J. Virol. 25: 312.PubMedGoogle Scholar
  99. Miura, K.-I., Watanabe, K., and Sugiura, M., 1974, 5’-Terminal nucleotide sequences of the double-stranded RNA of silkworm cytoplasmic polyhedrosis virus, J. Mol. Biol. 86: 31.Google Scholar
  100. Miura, K., Furuichi, Y., Shimotohno, K., Urushibara, T., and Sugiura, M., 1975, Structure of the termini of the RNAs of reoviridae, Inserm. 47: 153.Google Scholar
  101. Mundry, K. W., 1969, Structural elements of viral ribonucleic acid and their variation. I. An adenine-rich and strain-specific segment in tobacco mosaic virus ribonucleic acid. Mol. Gen. Genet. 105: 361.PubMedCrossRefGoogle Scholar
  102. Nair, C. N., and Panicali, D. L., 1976, Polyadenylate sequences of human rhinovirus and poliovirus RNA and cordycepin sensitivity of virus replication, J. Virol. 20: 170.PubMedGoogle Scholar
  103. Nomoto, A., Kitamura, N., Golini, F., and Wimmer, E., 1977, The 5’-terminal structures of poliovirion RNA and poliovirus mRNA differ only in the genome-linked protein VPg, Proc. Natl. Acad. Sci. USA 74: 5345.PubMedCrossRefGoogle Scholar
  104. Ohno, T., Okada, Y., Shimotohno, K., Miura, K.-I., Shinshi, H., Miwa, M., and Sugimura, T., 1976, Enzymatic removal of the 5’-terminal methylated blocked structure of tobacco mosaic virus RNA and its effect on infectivity and reconstitution with coat protein, FEBS Lett. 67: 209.PubMedCrossRefGoogle Scholar
  105. Owens, R. A., and Kaper, J. M., 1977, Cucumber mosaic virus associated RNA 5. II. In vitro translation in a wheat germ protein-synthesis system. Virology 80: 196.Google Scholar
  106. Pelham, H. R. B., 1978, Leaky UAG termination codon in tobacco mosaic virus RNA, Nature (London) 272: 469.CrossRefGoogle Scholar
  107. Pettersson, R. F., Flanegan, J. B., Rose, J. K., and Baltimore D., 1977a, 5’ Terminal nucleotide sequences of polio virus polyribosomal RNA and virion RNA are identical. Nature 268: 270.Google Scholar
  108. Pettersson, R. F., Hewlett, M. J., and Baltimore, D., 1911b. The genome of Uukuniemi virus consists of three unique RNA segments. Cell 11: 51.CrossRefGoogle Scholar
  109. Pinck, L., 1975, The 5′-end groups of alfalfa mosaic virus RNAs are m7G5’ ppp5’ Gp, FEBS Lett. 59: 24.PubMedCrossRefGoogle Scholar
  110. Pinck, M., Yot, P., Chapeville, F., and Duranton, H. M., 1970, Enzymatic binding of valine to the 3’ end of TYMV-RNA, Nature (London) 226: 954.CrossRefGoogle Scholar
  111. Pleji, C. W. A., Neeleman, A., van Vloten-Doting, L., and Bosch, L., 1976, Translation of turnip yellow mosaic virus RNA in vitro: A closed and an open coat protein cistron, Proc. Natl. Acad. Sci. USA 73: 4437.CrossRefGoogle Scholar
  112. Porter, A., Carey, N., and Fellner, P., 1974, Presence of a large poly(rC) tract within the RNA of encephalomyocarditis virus. Nature (London) 248: 675.CrossRefGoogle Scholar
  113. Porter, A. G., Merregaert, J., van Emmelo, J., and Piers, W., 1978, Sequence of 129 nucleotides at the 3’-terminus of encephalomyocarditis virus RNA, Eur. J. Biochem. 87: 551.PubMedCrossRefGoogle Scholar
  114. RajBhandary, U. L., 1968, The labeling of end groups in polynucleotides: The selective modification of diol groups in RNA, J. Biol. Chem. 243: 556.PubMedGoogle Scholar
  115. Rhodes, D. P., Reddy, D. V. R., MacLeod, R., Black, L. M., and Banerjee, A. K., 1977, In vitro synthesis of RNA containing 5′-terminal structure mG(5′)ppp(5′)Apm by purified wound tumor virus. Virology 76: 554.PubMedCrossRefGoogle Scholar
  116. Richards, K. E., Guilley, H., Jonard, G., and Hirth, L., 1974, A specifically encapsidated fragment from the RNA of tobacco mosaic virus: Sequence homology with the coat protein cistron, FEBS Lett. 43: 31.PubMedCrossRefGoogle Scholar
  117. Richards, K., Guilley, H., Jonard, G., and Hirth, L., 1978a, Nucleotide sequence at the 5’ extremity of tobacco-mosaic-virus RNA 1. The noncoding region (nucleotides 1-68), Eur. J. Biochem. 84: 513.PubMedCrossRefGoogle Scholar
  118. Richards, K., Jonard, G., Guilley, H., and Keith, G., 1977, Leader sequence of 71 nucleotides devoid of G in tobacco mosaic virus RNA, Nature (London) 267: 548.CrossRefGoogle Scholar
  119. Richards, K. E., Jonard, G., Jacquemond, M., and Lot, H., 1978a, Nucleotide sequence of cucumber mosaic virus-associated RNA 5, Virology 89: 395.PubMedCrossRefGoogle Scholar
  120. Richardson, C. C., 1965, Phosphorylation of nucleic acid by an enzyme from T4 bacteriophage-infected Escherichia coli, Proc. Natl. Acad. Sci. USA 54: 158.PubMedCrossRefGoogle Scholar
  121. Rose, J. K., Haseltine, W. A., and Baltimore, D., 1976, 5’-Terminus of Moloney murine leukemia virus 35 S RNA is m7G5 ppp5 GmpCp, J. Virol. 20: 324.Google Scholar
  122. Sangar, D. V., Rowlands, D. J., Harris, T. J. R., and Brown P., 1977, Protein covalently linked to foot-and-mouth disease virus RNA, Nature (London) 268: 648.CrossRefGoogle Scholar
  123. Sanger, P., Brownlee, G. G., and Barrell, B. G., 1965, A two-dimensional fractionation procedure for radioactive nucleotides, J. Mol. Biol. 13: 373.PubMedCrossRefGoogle Scholar
  124. Schochetman, G. Stevens, R. H., and Simpson, R. W., 1977, Presence of infectious polyadenylated RNA in the coronavirus avian bronchitis virus.Virology 77: 772.PubMedCrossRefGoogle Scholar
  125. Schwartz, D. E., Zamecnik, P. C., and Weith, H. L., 1977, Rous sarcoma virus genome is terminally redundant: The 3’ sequence, Proc. Natl. Acad. Sci. USA 74: 994.PubMedCrossRefGoogle Scholar
  126. Shatkin, A. J., 1976, Capping of eukaryotic mRNAs, Cell 9: 645.PubMedCrossRefGoogle Scholar
  127. Shine, J., Czernilofsky, A. P., Priedrich, R., Bishop, J. M., and Goodman, H. M., 1977, Nucleotide sequence at the 5’ terminus of the avian sarcoma virus genome, Proc. Natl. Acad. Sci. USA 74: 1473.PubMedCrossRefGoogle Scholar
  128. Silber, R., Malathi, V. G., Schulman, L. H., and Hurwitz, J., 1973, Studies of the Rous sarcoma virus RNA: Characterization of the 5’-terminus, Biochem. Biophys. Res. Commun. 50: 467.PubMedCrossRefGoogle Scholar
  129. Silberklang, M., Prochiantz, A., Haenni, A.-L., and RajBhandary, U. L., 1977, Studies on the sequence of the 3’-terminal region of turnip-yellow-mosaic-virus RNA, Eur. J. Biochem. 72: 465.PubMedCrossRefGoogle Scholar
  130. Sinha, N. K., Enger, M. D., and Kaesberg, P., 1965, Comparison of pancreatic RNase digestion products of R17 viral RNA and M12 viral RNA, J. Mol. Biol. 12: 299.PubMedCrossRefGoogle Scholar
  131. Skehel, J. J., and Hay, A. J., 1978a, Influenza virus transcription, J. Gen. Virol. 39: 1.PubMedCrossRefGoogle Scholar
  132. Skehel, J. J., and Hay, A. J., 1978b, Nucleotide sequences at the 5’ termini of influenza virus RNAs and their transcripts. Nucleic Acids Res. 5: 1207.PubMedCrossRefGoogle Scholar
  133. Spector, D. H., and Baltimore, D., 1975, Polyadenylic acid in poliovirus RNA. II. Poly(A) on intracellular RNA’s, J. Virol. 15: 1418.PubMedGoogle Scholar
  134. Steinschneider, A., and Fraenkel-Conrat, H., 1966a, Studies of nucleotide sequences in tobacco mosaic virus ribonucleic acid. III. Periodate oxidation and semicarbazone formation, Biochemistry 5: 2729.PubMedCrossRefGoogle Scholar
  135. Steinschneider, A., and Fraenkel-Conrat, H., 1966a, Studies of nucleotide sequences in tobacco mosaic virus ribonucleic acid. IV. Use of aniline in step-wise degradation. Biochemistry 5: 2735.PubMedCrossRefGoogle Scholar
  136. Stephenson, M. L., Scott, J. P., and Zamecnik, P. C., 1973, Evidence that polyadenylic acid segment of “35 S” RNA of avian myeloblastosis virus is located at the 3’-OH terminus, Biochem. Biophys. Res. Commun. 55: 8.PubMedCrossRefGoogle Scholar
  137. Stoll, E., Billeter, M. A., Palmenberg, A., and Weissmann, C., 1977, Avian myeloblastosis virus RNA is terminally redundant: Implications for the mechanism of retrovirus replication. Cell 12: 57.PubMedCrossRefGoogle Scholar
  138. Sugiyama, T., 1965, 5′-Linked end group of RNA from bacteriophage MS2, J. Mol. Biol. 11: 856.Google Scholar
  139. Sugiyama, T., and Fraenkle-Conrat, H., 1961, Identification of 5′-linked adenosine as end-group of TMV-RNA, Proc. Natl. Acad. Sci. USA 47: 1393.PubMedCrossRefGoogle Scholar
  140. Symons, R. H., 1975, Cucumber mosaic virus RNA contains 7-methylguanosine at the 5’-terminus of all four RNA species. Mol. Biol. Rep. 2: 277.PubMedCrossRefGoogle Scholar
  141. Wengler, G., and Wengler, G., 1976, Localization of the 26-S RNA sequences on the viral genome type 42-S RNA isolated from SFV-infected cells, Virology 73: 190.PubMedCrossRefGoogle Scholar
  142. Whitfeld, P. R., 1965, Application of the periodate method for the analysis of nucleotide sequence to tobacco mosaic virus RNA, Biochim. Biophys. Acta 108: 202.PubMedCrossRefGoogle Scholar
  143. Wimmer, E., Chang, A. Y., Clark, J. M., Jr., and Reichmann, M. E., 1968, Sequence studies of satellite tobacco necrosis virus RNA, J. Mol. Biol. 38: 59.PubMedCrossRefGoogle Scholar
  144. Yogo, Y., and Wimmer, E., 1972, Polyadenylic acid at the 3’-terminus of poliovirus RNA, Proc. Natl. Acad. Sci. USA 69: 1877.PubMedCrossRefGoogle Scholar
  145. Young, R. J., and Content, J., 1971, 5’-Terminus of influenza virus RNA, Nature (London) New Biol. 230: 140.Google Scholar
  146. Zimmern, D., 1975, The 5′ end group of tobacco mosaic virus RNA is m7G5 ppp5 Gp, Nucleic Acids Res. 2: 1189.PubMedCrossRefGoogle Scholar
  147. Zimmern, D., 1977, The nucleotide sequence at the origin for assembly on tobacco mosaic virus RNA, Cell 11: 463.PubMedCrossRefGoogle Scholar
  148. Zimmern, D., and Butler, J. G., 1977, The isolation of tobacco mosaic virus RNA fragments containing the origin for viral assembly, Cell 11: 455.PubMedCrossRefGoogle Scholar
  149. Zimmern, D., and Kaesberg, P., 1978, 3’-Terminal nucleotide sequences of encephalomyocarditis virus and poliovirus RNAs determined by use of reverse transcriptase and chain terminating inhibitors, Proc. Natl. Acad. Sci. USA 75: 4257.Google Scholar

Copyright information

© Springer Science+Business Media New York 1979

Authors and Affiliations

  • H. Fraenkel-Conrat
    • 1
  1. 1.Department of Molecular Biology and Virus LaboratoryUniversity of CaliforniaBerkeleyUSA

Personalised recommendations