Recent Advances in Body Fuel Metabolism

  • Philip Felig
  • Veikko Koivisto


The major fuels involved in body metabolism are carbohydrate, fat (including ketones), and amino acids. In this review, we focus on recent studies that deal with the regulation of fuel production and utilization. Hormonal interactions, particularly as they relate to diabetes mellitus, are discussed. In addition, the effects of exercise on fuel homeostasis and insulin metabolism are reviewed.


Glucose Production Ketone Body Prolonged Exercise Plasma Glucagon Ketone Body Production 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahlborg, G., and Felig, P., 1976, Influence of glucose ingestion of fuel-hormone response during prolonged exercise,J. Appl. Physiol. 41: 683–688.Google Scholar
  2. Ahlborg, G., and Felig, P., 1977, Substrate utilization during prolonged exercise preceded by ingestion of glucose. Am. J. Physiol. 233: E188–194.PubMedGoogle Scholar
  3. Ahlborg, G., and Hagenfeldt, L., 1977, Effect of heparin on the substrate utilization during prolonged exercise, Scand. J. Clin. Lab. Invest. 37: 619–624.CrossRefGoogle Scholar
  4. Ahlborg, G., Felig, P., Hagenfeldt, L., Hendler, R., and Wahren, J., 1974, Substrate turnover during prolonged exercise in man: Splanchnic and leg metabolism of glucose, free fatty acids and amino acids,J. Clin. Invest. 53: 1080–1090.CrossRefGoogle Scholar
  5. Albisser, A. M., Leibel, B. S., Zinman, B., Murray, F. T. P., Zingg, W., Botz, C. K., Denoga, A., and Marliss, E., 1977, Studies with an artificial endocrine pancreas, Arch. Intern. Med. 137: 639–649.Google Scholar
  6. Ayuso-Parrilla, M. S., Martin-Requero, A., and Parrilla, R., 1977, On the mechanism of glucagon stimulation of hepatic gluconeogenesis, Pfluegers Arch. 370: 45–49.CrossRefGoogle Scholar
  7. Barnes, A. J., and Bloom, S. R., 1976, Pancreatectomized man: A model for diabetes without glucagon, Lancet 1: 219–221.Google Scholar
  8. Barnes, A. J., Bloom, S. R., Albert, K. G. M. M., Smythe, P. S., Alford, F. P., and Chisholm, D. J., 1977a, Ketoacidosis in pancreatectomized man, N. Engl. J. Med. 296: 1250–1253.Google Scholar
  9. Barnes, A. J., Bloom, S. R., Mashiter, K., Alberti, K. G. M. M., Smythe, P., and Turnell, D., 1977b, Persistent metabolic abnormalities in diabetes in the absence of glucagon, Diabetologia 13: 71–75.PubMedCrossRefGoogle Scholar
  10. Berger, M., Halban, P. A., Müller, W. A., Offord, R. E., Renold, A. E., and Vranic, M., 1978, Mobilization of subcutaneously injected tritiated insulin in rats: Effects of muscular exercise, Diabetologia 15: 133–140.Google Scholar
  11. Bomboy, J. D., Lewis, S. B., Lacy, W. W., Sinclair-Smith, B. C., and Liljenquist, J. E., 1977, Transient stimulatory effect of sustained hyperglucagonemia on splanchnic glucose production in normal and diabetic man, Diabetes 26: 177–184.PubMedCrossRefGoogle Scholar
  12. Buse, M. G., Biggers, J. F., Friderici, K. H., and Buse, J. F., 1972, Oxidation of branched chain amino acids by isolated hearts and diaphragms of the rat, J. Bwl Chem. 247: 8085–8096.Google Scholar
  13. Chang, T. W., and Goldberg, A. L., 1978a, The origin of alanine produced in skeletal muscle,J. Biol. Chem. 253: 3677–3684.Google Scholar
  14. Chang, T. W., and Goldberg, A. L., 1978b, The metabolic fates of amino acids and the formation of glutamine in skeletal muscle,J. Biol. Chem. 253: 3685–3695.Google Scholar
  15. Chang, T. W., and Goldberg, A. L., 1978c, Leucine inhibits oxidation of glucose and pyruvate in skeletal muscles during fasdng, J. Biol. Chem. 253: 3696–3701.Google Scholar
  16. Chiasson, J. L., Liljenquist, J. E., Sinclair-Smith, B. C., and Lacy, W. W., 1975, Gluconeogenesis from alanine in normal postabsorptive man: Intrahepatic stimulatory effect of glucagon. Diabetes 24: 574–584.Google Scholar
  17. Cook, G. A., Lakshmanan, M. R., and Veech, R. L., 1977, The effect of glucagon on hepatic malonyl-coenzyme A concentration and on lipid synthesis. Fed. Proc. Fed. Am. Soc. Exp. Biol. 36: 672 (abstract).Google Scholar
  18. Costül, D. L., Coyle, E., Dalsky, G., Evans, W., Fink, W., and Hoopes, D., 1977, Effects of elevated plasma FFA and insulin on muscle glycogen usage during exercise, J. AppL Physiol. 43: 695–699.Google Scholar
  19. Dandona, P., Hooke, O., and Bell, J., 1978, Exercise and insulin absorption from subcutaneous tissue, Br. Med. J. 1 (611): 479–480.PubMedCrossRefGoogle Scholar
  20. Deacon, S. P., Karunanayake, A., and Barnett, D., 1977, Acebutolol, atenolol, and propranolol and metabolic responses to acute hypoglycemia in diabetics, Br. Med. J. 2 (6097): 1255–1257.PubMedCrossRefGoogle Scholar
  21. DeFronzo, R. A., Andres, R., Bledsoe, T. A., Boden, G., Faloona, G. A., and Tobin, J. D., 1977, A test of the hypothesis that the rate of fall in glucose concentration triggers counterregulatory hormonal response in man. Diabetes 26: 445–452.CrossRefGoogle Scholar
  22. Felig, P., 1973, The glucose alanine cycle, Metabolism 22: 179–207.PubMedCrossRefGoogle Scholar
  23. Felig, P., 1975, Amino acid metabolism in man, Annu. Rev. Biochem. 44: 933–955.Google Scholar
  24. Felig, P., and Koivisto, V. A., 1978, Body fuel metabolism, in: The Year in Metabolism 1977 ( N. Freinkel, ed.), pp. 143–168, Plenum Medical Book Company, New York.Google Scholar
  25. Felig, P., Owen, O. E., Wahren, J., and CahiU, G. F., Jr., 1969, Amino acid metabolism during prolonged starvation,J. Clin. Invest. 48: 584–594.Google Scholar
  26. Felig, P., Marliss, E., and Ohman, J. L., 1970a, Plasma amino acid levels in diabetic ketoacidosis, Diabetes 19: 727–729.PubMedGoogle Scholar
  27. Felig, P., Pozefsky, T., Marliss, E., and Cahill, G. F., Jr., 1970b, Alanine: Key role in gluconeogenesis, Science 167: 1003–1004.Google Scholar
  28. Felig, P., Kim, Y. J., Lynch, V., and Hendler, R., 1972a, Amino acid metabolism during starvation in human pregnancy,J. Clin. Invest. 51: 1195–1202.CrossRefGoogle Scholar
  29. Felig, P., Wahren, J., Hendler, R., and Ahlborg, G., 1972b, Plasma glucagon levels in exercising man, N. Engl J. Med. 287: 184–185.CrossRefGoogle Scholar
  30. Felig, P., Wahren, J., Karl, 1., Cerasi, E., Luft, R., and Kipnis, D. M., 1973a, Glutamine and glutamate metabolism in normal and diabetic subjects. Diabetes 22: 573–576.Google Scholar
  31. Felig, P., Wahren, J., and Raf, L., 1973b, Evidence of inter-organ amino acid transport by blood cells in man, Proc. Natl. Acad. Sci. U.S.A. 70: 1775–1779.CrossRefGoogle Scholar
  32. Felig, P., Wahren, J., and Hendler, R., 1976a, Influence of physiologic hyperglu- cagonemia on basal and insulin-inhibited splanchnic glucose output in normal man,J. Clin. Invest. 58: 761–765.CrossRefGoogle Scholar
  33. Felig, P., Wahren, J., Sherwin, R., and Hendler, R., 1976b, Insulin, glucagon and somatostatin in normal physiology and diabetes mellitus. Diabetes 25: 1091–1099.PubMedCrossRefGoogle Scholar
  34. Freinkel, N., Cohen, A. K., Sandler, R., and Arky, R. A., 1967, Alcohol hypoglycemia: A prototype of the hypoglycemias induced in the fasting state, in: Proceedings of the 6th Congress of the International Diabetes Federation, Excerpta Med. Int. Congr. Ser. 172: 873–886.Google Scholar
  35. Ganda, O. P., Weir, G. C., Soeldener, J. S., Legg, M. A., Chick, W. L., Patel, Y. C., Ebeid, A. M., Gabbay, K. H., and Reichlin, S., 1977, Somatostatinoma: A somatostatin containing tumor of endocrine pancreas, N. Engl. f. Med. 296: 963–967.Google Scholar
  36. Garber, A. J., Cryer, P. E., Santiago, J. V., Haymond, M. W., Pagliara, A. S., and Kipnis, D. M., 1976a, The role of adrenergic mechanism in the substrate and hormonal response to insulin-induced hypoglycemia in man, f. Clin. Invest. 58: 7–15.CrossRefGoogle Scholar
  37. Garber, A. J., Karl, I. E., and Kipnis, D. M. 1976b, Alanine and glutamine synthesis and release from skeletal muscle. I. Glycolysis and amino acid release,J. Biol. Chem. 251: 826–835.Google Scholar
  38. Garber, A. J., Karl, I. E., and Kipnis, D. M., 1976c, Alanine and glutamine synthesis and release form skeletal muscle. II. The precursor role of amino acids in alanine and glutamine synthesis,J. Biol. Chem. 251: 836–843.Google Scholar
  39. Gerich, J. E., Lorenzi, M., Bier, D. M., Tsalikian, E., Schneider, V., Karam, J. H., and Forsham, P. H., 1976, Effects of physiologic levels of glucagon and growth hormone on human carbohydrate and lipid metabolism: Studies involving administration of exogenous hormone during suppression of endogenous hormone secretion with somatostatin, J. Clin. Invest. 57: 875–884.Google Scholar
  40. Goldstein, L., and Newsholme, E. A., 1976, The formation of alanine from amino acids in diaphragm muscle of the rat, Biochem. J. 154: 555–558.PubMedGoogle Scholar
  41. Hickson, R. C., Rennie, M. J., Conlee, R. K., Winder, W. W., and HoUoszy, J. O., 1977, Effects of increased plasma fatty acids on glycogen utilization and endurance,J. Appl. Physiol. 43: 829–833.Google Scholar
  42. Hoist, J. J., Guldberg Madsen, O., Knop, J., and Schmidt, A., 1977, The effect of intraportal and peripheral infusions of glucagon on insulin and glucose concentrations and glucose tolerance in normal man, Diabetologia 13: 487–490.CrossRefGoogle Scholar
  43. Jennings, A. S., Cherrington, A. D., Liljenquist, J. E., Keller, U., Lacy, W. W., and Chiasson, J. L., 1977, The roles of insulin and glucagon in the regulation of gluconeogenesis in the postabsorptive dog. Diabetes 26: 847–856.PubMedGoogle Scholar
  44. Joffe, B. I., Shires, R., Seftel, H. C., and Heding, L. G., 1977, Plasma insulin, C- peptide, and glucagon levels in acute phase of ethanol-induced hypoglycae- mia, Br. Med. J. 2 (6088): 678.PubMedCrossRefGoogle Scholar
  45. Jones, D. P., Perman, E. S., and Lieber, C. S., 1965, Free fatty acid turnover and triglyceride metabolism after ethanol ingestion in man, J. Lab. Clin. Med. 66: 804–813.Google Scholar
  46. Jorfeldt, L., and Juhlin-Dannfelt, A., 1977, The influence of ethanol on human splanchnic and skeletal muscle metabolism during exercise, Scand. J. Clin. Lab. Invest. 37: 609–618.CrossRefGoogle Scholar
  47. Juhlin-Dannfelt, A., Ahlborg, G., Hagenfeldt, L., Jorfeldt, L., and Felig, P., 1977, Influence of ethanol on splanchnic and skeletal muscle substrate turnover during prolonged exercise in man. Am. J. Physiol. 233:PE195–202.Google Scholar
  48. Kawamori, R., and Vranic, M., 1977, Mechanism of exercise-induced hypoglycemia in depancreatized dogs maintained on long-acting insulin, J. Clin. Invest. 59: 331–337.CrossRefGoogle Scholar
  49. Keller, U., Chiasson, J.-L., Liljenquist, J. E., Cherrington, A. D., Jennings, A. S., and Crofford, O., 1977, The roles of insulin, glucagon, and free fatty acids in the regulation of ketogenesis in dogs, Diabetes 26: 1040–1056.PubMedGoogle Scholar
  50. Koerker, D. L., Ruch, W., Chideckel, E., Palmer, J., Goodner, C. J., Ensinck, J., and Gale, C. C., 1974, Somatostatin: Hypothalamic inhibitor of the endocrine pancreas. Science 184: 482–484.Google Scholar
  51. Koivisto, V. A., and Felig, P., 1978, Effects of leg exercise on insulin absorption in diabetic patients, N. Engl. J. Med. 298: 79–83.Google Scholar
  52. Krebs, H. A., 1968, The effects of ethanol on the metabolic activities of the liver. Adv. Enzyme Regul. 6: 467–480.PubMedCrossRefGoogle Scholar
  53. Larsson, L.-L, Hirsch, M. A., Hoist, J. J., Ingemansson, S., Kühl, C., Lindkaer Jensen, S. L., Lundquist, G., Rehfeld, J. F., and Schwartz, T. W., 1977, Pancreatic somatostatinoma: Clinical features and physiological implications, Lancet 1: 666–668.Google Scholar
  54. Mallette, L. E., Exton, J. H., and Park, C. R., 1969, Control of gluconeogenesis from amino acids in the perfused rat liver,J. Biol. Chem. 244: 5713–5723.Google Scholar
  55. Marliss, E. B., Aoki, T. T., Pozefsky, T., Most, A. S., and Cahill, G. F., Jr., 1971, Muscle and splanchnic glutamine and glutamate metabolism in post absorptive and starved man,J. Clin. Invest. 50: 814–817.Google Scholar
  56. McGarry, J. D., and Foster, D. W., 1977, Hormonal control of ketogenesis: Biochemical considerations. Arch. Intern. Med. 137: 495–501.Google Scholar
  57. McGarry, J. D., Meier, J. M., and Foster, D. W., 1973, The effects of starvation and refeeding on carbohydrate and lipid metabolism in vivo and in the perfused rat liver: The relationship between fatty acid oxidation and esterification in the regulation of ketogenesis,Biol. Chem. 248: 270–278.Google Scholar
  58. McGarry, J. D., Mannaerts, G. P., and Foster, D. W., 1977, A possible role for malonyl-CoA in the regulation of hepatic fatty acid oxidation and ketogene- sis,J. Clin. Invest. 60: 265–270.CrossRefGoogle Scholar
  59. Murray, F. T., Zinman, B., McLean, P. A., Denoga, A., Albisser, A. M., Leibel, B. S., Nakhioda, A. F., Stokes, E. F., and Marliss, E. B., 1977, The metabolic response to moderate exercise in diabetic man receiving intravenous and sulxutaneous insulin,J. Clin. Endocrinol. Metab. 44: 708–720.CrossRefGoogle Scholar
  60. Odessey, R., Khairallah, E. A., and Goldberg, A. L., 1974, Origin and possible significance of alanine production by skeletal muscle, J. Biol. Chem. 249: 7623–7629.Google Scholar
  61. Ozand, P. T., Reed, W. D., Girard, J., Hawkins, R. L., Collins, R. M., Jr., Tildón, J. T., and Cornblath, M., 1977, Hypoketonaemic effect of L-alanine, Biochem.J. 164: 557–564.PubMedGoogle Scholar
  62. Pagliara, A. S., Karl, I. E., De Vivo, D. C., Feigin, R. D., and Kipnis, D. M., 1972, Hypoalaninemia: A concomitant ketotic hypoglycemia, J. Clin. Invest. 51: 1440–1449.CrossRefGoogle Scholar
  63. Palaiologos, G., and Felig, P., 1976, Effects of ketone bodies on amino acid metabolism in isolated rat diaphragm, Biochem.J. 154: 709–716.PubMedGoogle Scholar
  64. Parving, H.-H., Noer, I., Kehlet, H., Mogensen, C. E., Svendsen, P. A., and Heding, L., 1977, The effect of short-term glucagon and growth hormone infusion on kidney function in normal man, Acta Endocñnol. 85 (Suppl. 209): 50.Google Scholar
  65. Pirnay, F., Lacroix, M., Mosora, F., Luyckx, A., and Lefebvre, P., 1977, Glucose oxidation during prolonged exercise evaluated with naturally labeled glucose,J. Appl. Physiol. 43: 258–261.Google Scholar
  66. Pozefsky, T., FeHg, P., Tobin, J. D., Soeldner, J. S., and Gahill, G. F., Jr., 1969, Amino acid balance across the tissue of the forearm in postabsorptive man: Effects of insulin at two dose levels,J. Clin. Invest. 48: 2273–2282.Google Scholar
  67. Randle, P. J., Garland, P. B., Hales, G. N., and Newsholme, E. A., 1963, The glucose fatty acid cycle: Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet 1: 785–789.Google Scholar
  68. Raskin, P., and Unger, R. H., 1977, Effects of exogenous hyperglucagonemia in insulin-treated diabetics, Diabetes 26: 1034–1039.PubMedGoogle Scholar
  69. Rennie, M. J., and Holloszy, J. O., 1977, Inhibition of glucose uptake and glycogenolysis by availability of oleate in well-oxygenated perfused skeletal muscle, Biochem.J. 168: 161–170.PubMedGoogle Scholar
  70. Rennie, M. J., Winder, W. W., and Holloszy, J. O., 1976, A sparing effect of increased plasma fatty acids on muscle and liver glycogen content in the exercising rat, Biochem. J. 156: 647–655.PubMedGoogle Scholar
  71. Saccá, L., Perez, G., Garteni, G., Trimarco, B., and Rengo, F., 2977a, Role of glucagon in the glucoregulatory response to insulin-induced hypoglycemia in the rat, Horm. Metab. Res. 9: 209–212.CrossRefGoogle Scholar
  72. Saccá, L., Trimarco, B., Perez, G., and Rengo, F., 1977b, Studies on the mechanism underlying the influence of alanine infusion on glucose dynamics in the dog. Diabetes 26: 262–270.PubMedCrossRefGoogle Scholar
  73. Schade, D. S., and Eaton, R. P., 1976, Modulation of fatty acid metabolism by glucagon in man. IV. Effects of physiologic hormone infusion in normal man. Diabetes 25: 978–983.Google Scholar
  74. Schade, D. S., and Eaton, R. P., 1977, The regulation of plasma ketone body concentration by counterregulatory hormones in man, Diabetes 26: 989–996.PubMedCrossRefGoogle Scholar
  75. Schade, D. S., Eaton, R. P., and Standefer, J., 1977, Glucocorticoid regulation of plasma ketone body concentration in insulin deficient man, J. Clin. Endocrinol Metab. 44: 1069–1079.CrossRefGoogle Scholar
  76. Sherwin, R. S., Basd, C., Finkelstein, F. O., Fisher, M., Black, H., Hendler, R., and Felig, P., 1976a, Influence of uremia and hemodialysis on the turnover and metabolic effects of glucagon,Clin. Invest. 57: 722–731.CrossRefGoogle Scholar
  77. Sherwin, R. S., Fisher, M., Hendler, R., and Felig, P., 1976b, Hyperglucagonemia and blood glucose regulation in normal, obese and diabetic subjects, N. Engl. J. Med. 294: 455–461.Google Scholar
  78. Sherwin, R. S., Hendler, R., DeFronzo, R. A., Wahren, J., and Felig, P., 1977a, Glucose homeostasis during prolonged suppression of glucagon and insulin secretion by somatostatin, Proc. Natl. Acad. Sei. U.S.A. 74: 348–352.CrossRefGoogle Scholar
  79. Sherwin, R. S., Tamborlane, W., Hendler, R., Sacca, L., DeFronzo, R. A., and Felig, P., 1977b, Influence of glucagon replacement on the hyperglycemic and hyperketonemic response to prolonged somatostatin infusion in normal man, J. CJ.. Endocrinol. Metab. 45: 1104–1107.CrossRefGoogle Scholar
  80. Siler, T. M., Vandenberg, G., and Yen, S. S. C., 1973, Inhibition of growth hormone release in humans by somatostatin, J. Clin. Endocrinol. Metab. 37: 632–634.CrossRefGoogle Scholar
  81. Singh, S. P., and Snyder, A. K., 1978, Effect of thyrotoxicosis on gluconeogenesis from alanine in the perfused rat liver. Endocrinology 102: 182–187.PubMedCrossRefGoogle Scholar
  82. Soman, V., and Felig, P., 1977, Glucagon and insulin binding to liver membranes in a partially nephrectomized uremic rat model, J. Clin. Invest. 60: 224–232.CrossRefGoogle Scholar
  83. Tamborlane, W. T., Sherwin, R. S., Hendler, R., and Felig, P., 1977, Metabolic effects of somatostatin in maturity onset diabetes, N. Engl. J. Med. 297: 181–183.Google Scholar
  84. Unger, R. H., 1976, Glucagon and blood sugar (letter), N. Engl. J. Med. 294: 1239.Google Scholar
  85. Unger, R. H., Ohneda, A., Aquilar-Parada, E., and Eiseutraut, A. M., 1969, The role of aminogenic glucagon secretion in blood glucose homeostasis, J. Clin. Invest. 48: 810–822.CrossRefGoogle Scholar
  86. Vranic, M., Kawamori, R., Pek, S., Kovacevic, N., and Wrenshall, G. A., 1976, The essentiality of insulin and the role of glucagon in regulating glucose utilization and production during strenuous exercise in dogs, J. Clin. Invest. 57: 245–255.CrossRefGoogle Scholar
  87. Wahren, J., and Felig, P., 1976, Influence of somatostatin on carbohydrate disposal and absorption in diabetes mellitus. Lancet 2: 1213–1216.PubMedCrossRefGoogle Scholar
  88. Wahren, J., Felig, P., and Hagenfeldt, J., 1976, Effect of protein ingestion on splanchnic and leg metabolism in normal man and in patients with diabetes mellitus, J.Clin. Invest. 57: 987–999.PubMedCrossRefGoogle Scholar
  89. Wahren, J., Efendic, S., Luft, R., Hagenfeldt, L., Björkman, O., and Felig, P., 1977, Influence of somatostatin on splanchnic glucose metabolism in postab- sorptive and 60–hour fasted humans,J. Clin. Invest. 59: 299–307.CrossRefGoogle Scholar
  90. Wülms, B., Böttcher, V., Wolters, V., Sakamoto, N., and Soling, H. D., 1969, Relationship between fat and ketone body metabolism in obese and nonobese diabetics and nondiabetics during norepinephrine infusion, Diabetologia 5: 88–96.CrossRefGoogle Scholar
  91. Windmueller, H. G., and Spaeth, A. E., 1978, Identification of ketone bodies and glutamine as the major respiratory fuels in vivo for postabsorptive rat small intestine,J. Biol, Chem. 253: 69–76.Google Scholar
  92. Zinman, B., Murray, F. T., Vranic, M., Albisser, A. M., Leibel, B. S., McLean, P. A., and Marliss, E. B., 1977, Glucoregulation during moderate exercise in insulin treated diabetics,J. Clin. Endocrinol Metab. 45: 641–652.CrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1979

Authors and Affiliations

  • Philip Felig
    • 1
  • Veikko Koivisto
    • 1
  1. 1.Section of Endocrinology, Department of Internal MedicineYale University School of MedicineNew HavenUSA

Personalised recommendations