Advertisement

Hormone Receptors, Cyclic Nucleotides, and Control of Cell Function

  • Gerald D. Aurbach
  • Edward M. Brown

Abstract

The general scope established with the first chapter in this series (Aurbach, 1976) is developed further in this chapter. Since the writing of that first chapter, considerable further progress has been made in identification by direct binding studies of receptors with novel ligands for β- adrenergic, α-adrenergic, and dopaminergic receptors. The latter are discussed here for the first time in this series. New knowledge has been gained concerning the biosynthesis of the ACTH precursor molecule, which, remarkably, has now been discovered to contain the opiate-receptor-active polypeptide endorphin as well. There is further understanding of the interrelationships at the receptor level of somatomedins (now renamed IGF-I and IGF-II, insulinlike growth factors), multiplication-stimulating activity (MSA), and proinsulin. The structures of these molecules, it is now recognized, share extensive amino acid sequence homologies and additional similarities in secondary structure.

Keywords

Adenylate Cyclase Adrenergic Receptor Cholera Toxin Cyclic Nucleotide Guanine Nucleotide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahlquist, R. P., 1948, A study of the adrenotropic receptors, Am. J. Physiol. 153: 586–600.Google Scholar
  2. Atlas, D., and Levitzki, A., 1977, Probing of B-adrenergic receptors by novel fluorescent B-adrenergic blockers, Proc. Natl. Acad. Sci. U.S.A. 74: 5290–5294.CrossRefGoogle Scholar
  3. Adas, D., Steer, M. L., and Levitzki, A., 1976, Affinity label for beta-adrenergic receptor in turkey erythrocytes, Proc. Natl. Acad. Sci. U.S.A. 73: 1921–1925.CrossRefGoogle Scholar
  4. Aurbach, G. D., 1976, Hormone receptors, cyclic nucleotides, and control of cell function, in: The Year in Metabolism 1975–1976 ( N. Freinkel, ed.), pp. 1–43, Plenum Medical Book Company, New York.Google Scholar
  5. Aurbach, G. D., and Chase, L. R., 1976, Cyclic nucleotides and biochemical actions of parathyroid hormone and calcitonin, in: Handbook of Physiology (R. O. Creep and E. B. Astwood, eds.), Section 7, Endocrinology, Vol. VII, Parathyroid Gland ( G. D. Aurbach, ed.), pp. 353–381, American Physiological Society, Washington, D. C.Google Scholar
  6. Babka, J. C., Bower, R. H., and Sode, J., 1976, Nephrogenous cyclic AMP levels in primary hyperparathyroidism, Arch. Intern. Med. 136: 1140–1144.Google Scholar
  7. Baldessarini, R. J., 1977, Schizophrenia, N. Engl. J. Med. 297: 988–995.Google Scholar
  8. Ball, J. H., Kaminsky, N. I., Hardman, J. G., Broadus, A. E., Sutherland, E. W., and Liddle, G. W., 1972, Effects of catecholamines and adrenergic blocking agents on plasma and urinary cyclic nucleotides in man, J. Clin. Invest. 51: 2124–2129.CrossRefGoogle Scholar
  9. Batzri, S., Selinger, Z., Schramm, M., and Rubinovitch, M. R., 1973, Potassium release mediated by the epinephrine alpha-receptor in rat parotid slices, J. Biol. Chem. 248: 361–368.Google Scholar
  10. Bennett, V., O’Keefe, E., and Cuatrecasas, P., 1975, Mechanism of action of cholera toxin and the mobile receptor theory of hormone receptor adenylate cyclase interactions, Proc. Natl. Acad. Sci. U.S.A. 72: 33–37.CrossRefGoogle Scholar
  11. Berg, D. K., Kelly, R. B., Sargent, P. B., Williamson, P., and Hall, Z. W., 1972, Binding of alpha-bungarotoxin to acetylcholine receptors in mammalian muscle, Proc. Natl. Acad. Sci. U.S.A. 69: 147–151.CrossRefGoogle Scholar
  12. Bernheimer, H., Birkmayer, W., Hornykiewicz, O., Jellinger, K., and Seitelberger, F. S., 1973, Brain dopamine and the syndromes of Parkinson and Huntington: Clinical, morphological and neurochemical correlations, J. Neurol. Sci. 20: 415–455.Google Scholar
  13. Besser, G. M., Parkes, L., Edwards, C. R. W., Forsyth, I. A., and McNeilly, A. S., 1972, Galactorrhea: Successful treatment with reduction of plasma prolactin levels by brom-ergocryptine, Br. Med. J. 3: 669–672.Google Scholar
  14. Biddulph, D. M., and Wrenn, R. W., 1977, Effects of parathyroid hormone on cyclic AMP, cyclic GMP, and efflux of calcium in isolated renal tubules, J. Cyclic Nucleotide Res. 3: 129–138.PubMedGoogle Scholar
  15. Bilezikian, J. P., Spiegel, A. M., Brown, E. M., and Aurbach, G. D., 1977, Identification and persistence of beta-adrenergic receptors during maturation of the rat reticulocyte, Mol. Pharmacol. 13: 775–785.PubMedGoogle Scholar
  16. Broadus, A. E., 1977, Clinical cyclic nucleotide research, Adv. Cyclic Nucleotide Res. 8: 509–548.PubMedGoogle Scholar
  17. Broadus, A. E., Mahaffey, J. E., Bartter, F. C., and Neer, R. M., 1977, Nephrogenous cyclic adenosine monophosphate as a parathyroid function test, J. Clin. Invest. 60: 771–783.CrossRefGoogle Scholar
  18. Brodows, R. G., Ensinck, J. W., and Campbell, R. G., 1976, Mechanism of plasma cyclic AMP response to hypoglycemia in man. Metabolism 25: 659–663.PubMedCrossRefGoogle Scholar
  19. Brown, E. M., Aurbach, G. D., Hauser, D., and Troxler, F., 1976, Beta-adrenergic receptor interactions: Characterization of iodohydroxybenzylpindolol as a specific Hgand,J. Biol. Chem. 251: 1232–1238.Google Scholar
  20. Brown, E. M., Hurwitz, S., Woodard, C. J., and Aurbach, G. D., 1977a, Direct identification of beta-adrenergic receptors on isolated bovine parathyroid cells. Endocrinology 100: 1703–1709.PubMedCrossRefGoogle Scholar
  21. Brown, E. M., Carroll, R. J., and Aurbach, G. D., 1977b, Dopaminergic stimulation of cyclic AMP accumulation and parathyroid hormone release from dispersed bovine parathyroid cells, Proc. Natl. Acad. Sci. U.S.A. 74: 4210–4213.CrossRefGoogle Scholar
  22. Burt, D. R., Enna, S. J., Creese, I., and Snyder, S. H., 1975, Dopamine receptor binding in the corpus striatum of mammalian brain, Proc. Natl. Acad. Sci. U.SA. 72: 4655–4659.CrossRefGoogle Scholar
  23. Butcher, F. R., 1975, The role of calcium and cyclic nucleotides in alpha-amylase release from slices of rat parotid: Studies with the divalent cation ionophore A23187, Metabolism 24: 409–418.PubMedCrossRefGoogle Scholar
  24. Calne, D. B., Teychenne, P. F., Claveria, L. E., Eastman, R., Greenacre, J. K., and Petrie, A., 1974, Bromocryptine in Parkinsonism, Br. Med. J. 4: 442–444.PubMedCrossRefGoogle Scholar
  25. Cannon, W. B., and Rosenbleuth, A., 1937, Autonomic Neuroeffector Systems, Mac- mil Ian, New York.Google Scholar
  26. Carter, D. J., and Heath, D. A., 1977, The effect of treatment of hyper- and hypothyroidism on urinary excretion of cyclic adenosine 3’,5’-monophosphate, Acta Endocrinol. 84: 542–547.PubMedGoogle Scholar
  27. Cassel, D., and Pfeuffer. R., 1978, Mechanism of cholera toxin action: Covalent modification of the guanyl nucleotide-binding protein of the adenylate cyclase svstem, Proc. Natl. Acad. Sci. USA 75: 2669–2673.CrossRefGoogle Scholar
  28. Cassel, D., and Selinger, Z., 1976, Catecholamine-stimulated GTP ase activity in turkev ervthroc\te membranes, Biochim. Biophys. Acta 452: 538–551.Google Scholar
  29. Cassel, D.. and Selinger, Z., 1977a, Activation of turkey erythrocyte adenylate cyclase and blocking of the catecholamine-stimulated GTP ase by guanosine 5’-(gamma-THIO) triphosphate, Biochem. Biophys. Res. Commun. 77: 868–873.Google Scholar
  30. Cassel, D., and Selinger, Z., 1977b, Mechanism of adenylate cyclase activation by cholera toxin: Inhibition of GTP hvdrolvsis at the regulatory site, Proc. Natl. Acad. Sci. U.S.A. 74: 3307–3311.Google Scholar
  31. Cassel, D., Levkovitz, H., and Selinger, Z., 1977, The regulatory GTP ase cvcle of turkey erythrocyte adenylate cyclase of turkey erythrocyte membrane, J. Cyclic Nucleotide Res.Google Scholar
  32. Chabardes, D., Imbert-Teboul, M., Montegut, M., Clique, A., and Morel, F., 1976, Distribution of calcitonin-sensitive adenylate cyclase activity along the rabbit kidney tubule, Proc. Natl. Acad. Sci. U.S.A. 73: 3608–3612.CrossRefGoogle Scholar
  33. Chabardes, D., Imbert-Teboul, M., Gagnan-Brunette, M., and Morel, F., 1978, Distribution of adenylate cyclase-linked hormone receptors in the nephron, in: Endocrinology of Calcium Metabolism ( D. H. Copp and R. V. Talmage, eds.), pp. 209–215, Excerpta Medica, Amsterdam.Google Scholar
  34. Chambers, D. J., Schäfer, H., Laugharn, J. A., Jr., Johnstone, J., Zanelli, J. M., Parsons, J. A., Bitensky, L., and Chayen, J., 1978, Dose-related activation by PTH of specific enzymes in various regions of the kidney, in: Endocrinology of Calcium Metabolism ( D. H. Copp and R. V. Talmage, eds.), pp. 216–220, Excerpta Medica, Amsterdam.Google Scholar
  35. Charness, M. E., Bylund, D. B., Beckman, B. S., Hollenberg, M. D., and Snyder, S. H., 1976, Independent variation of beta-adrenergic receptor binding and catecholamine-stimulated adenylate cyclase acdvity in rat erythrocytes, Eife Sci. 19: 243–249.Google Scholar
  36. Charreau, E. H., Attramadal, A., Torjesen, P. A., Calandra, R., Purvis, K., and Hansson, V., 1977, Androgen stimulation of prolactin receptors in rat prostate, Mol. Cell. Endocrinol. 7: 1–7.CrossRefGoogle Scholar
  37. Chase, L. R., and Arnbach, G. D., 1967, Parathyroid function and the renal excretion of 3’,5’-adenylic acid, Proc. Natl Acad. Sci. U.S.A. 58: 518–525.CrossRefGoogle Scholar
  38. Chase, L. R., and Aurbach, G. D., 1968, Renal adenyl cyclase: Anatomical separation of sites sensitive to parathyroid hormone and vasopressin, Science 159: 545–547.Google Scholar
  39. Chase, L. R., Melson, G. L., and Aurbach, G. D., 1969, Pseudohypoparathyroidism: Defective excretion of 3’,5’-AMP in response to parathyroid hormone, J. Clin. Invest. 48: 1832–1844.CrossRefGoogle Scholar
  40. Chasin, M., Rivkin, I., Mamrak, F., Samaniego, S. G., and Hess, S. M., 1971, Alpha and beta-adrenergic receptors as mediators of accumulation of cyclic adenosine 3’,5’-monophosphate in specific areas of guinea pig brain,J. Biol. Chem. 246: 3037–3041.Google Scholar
  41. Chou, C.-K., Alfano, J., and Rosen, O. M., 1977, Purification of phosphoprotein phosphatase from bovine cardiac muscle that catalyzes dephosphorylation of cyclic AMP-binding protein component of protein kinase, J. Biol. Chem. 252: 2855–2859.Google Scholar
  42. Clement-Cormier, Y., Kebabian, J. W., Petzold, G. L., and Greengard, P., 1974, Dopamine-sensitive adenylate cyclase in mammalian brain: A possible site of action of antipsychotic drugs, Proc. Natl. Acad. Sci. U.S.A. 71: 1113–1117.Google Scholar
  43. Coffino, P., Bourne, H. R., Friedrich, U., Hochman, J., Insel, P. A., Lemaire, I., Melmon, K. L., and Tomkins, G. M., 1976, Molecular mechanisms of cyclic AMP action: A genetic approach. Recent Prog. Horm. Res. 32: 669–684.Google Scholar
  44. Corbin, J. D., Keely, S. L., Soderling, T. R., and Park, C. R., 1975, Hormonal regulation of adenosine 3’,5’-monophosphate-dependent protein kinase, Adv. Cyclic Nucleotide Res. 5: 265–279.PubMedGoogle Scholar
  45. Cotzias, G. C., VanWoert, M. H., and Schiffer, L. M., 1967, Aromatic amino acids and modification of Parkinsonism, N. Engl. J. Med. 276: 374–379.Google Scholar
  46. Crine, P., Benjannet, S., Seidah, N. G., Lis, M., and Chretien, M., 1977, In vitro biosynthesis of beta-endorphin, gamma-hpotropin, and beta-lipotropin by the pars intermedia of beef pituitary glands, Proc. Natl. Acad. Sci. U.S.A. 74: 4276–4280.CrossRefGoogle Scholar
  47. Cuatrecasas, P., Jacobs, S., and Bennett, V., 1975, Activation of adenylate cyclase by phosphoramidate and phosphonate analogs of GTP: Possible role of covalent enzyme-substrate intermediates in the mechanism of hormonal activation, Proc. Natl. Acad. Sci. U.S.A. 72: 1739–1743.Google Scholar
  48. Dale, H. H., 1906, On some physiological actions of ergot, J. Physiol. 34: 163–206.PubMedGoogle Scholar
  49. DeLorenzo, R. J., and Greengard, P., 1973, Activation by adenosine 3’,5’-mono- phosphate of a membrane-bound phosphoprotein phosphatase from toad bladder, Proc. Natl. Acad Sci. U.S.A. 70: 1831–1835.CrossRefGoogle Scholar
  50. DeMeyts, P., Roth, J., Neville, D. M., Jr., Gavin, J. R., Ill, and Lesniak, M. A., 1973, Insulin interactions with its receptors: Experimental evidence for negative cooperativity, Biochem. Biophys. Res. Commun. 55: 154–161.Google Scholar
  51. Dufau, M. L., Tsuruhara, T., Horner, K. A., Podestà, E., and Catt, K. J., 1977, Intermediate role of adenosine 3’,5’-cyclic monophosphate and protein kinase during gonadotropin-induced steroidogenesis in testicular interstitial cells, Proc. Natl. Acad. Sci. U.S.A. 74: 3419–3423.CrossRefGoogle Scholar
  52. Ellis, S., and Beckett, S. B., 1963, Mechanism of the potassium mobilizing action of epinephrine and glucagon,J. Pharmacol. Exp. Ther. 142: 318–326.Google Scholar
  53. Forte, L. R., Nichols, G. A., and Anast, C. S., 1976, Renal adenylate cyclase and the interrelationship between parathyroid hormone and vitamin D in the regulation of urinary phosphate and adenosine cyclic monophosphate excretion, J. Clin. Invest. 57: 559–568.CrossRefGoogle Scholar
  54. Gill, D. M., 1976, Multiple roles of erythrocyte supernatant in the action ot adenylate cyclase by Vibrio cholerae toxin in vitro, J. Infect. Dis. 133: S55–S63.CrossRefGoogle Scholar
  55. Gill, D. M., and Meren, R., 1978, ADP-ribosylation of membrane proteins catalyzed by cholera toxin: Basis of the activation of adenylate cyclase, Proc. Natl. Acad. Sci. USA 75: 3050–3054.CrossRefGoogle Scholar
  56. Gill, G. N., 1977, A hypothesis concerning the structure of cAMP- and cGMP- dependent protein kinases, J. Cyclic Nucleotide Res. 3: 153–162.PubMedGoogle Scholar
  57. Gneg), M., Uzunov, P., and Costa, E., 1977, Participation of an endogenous calcium-binding activator in the development of drug-induced supersensitivity of striatal dopamine receptors, J. Pharmacol. Exp. Ther. 202: 55. 8–564.Google Scholar
  58. Goldberg, L. I., Sonneville, P. F., and McNay, J. L., 1968, An investigation of the structural requirements for dopamine-like renal vasodilatation: Phenylethyl- amines and apomorphine,Pharmacol. Exp. Ther. 163: 188–197.Google Scholar
  59. Goldberg, M. L., 1977, Radioimmunoassay for adenosine 3’,5’-cyclic monophosphate and guanosine 3’,5’-cyclic monophosphate in human blood, urine and cerebrospinal fluid, Clin. Chem. 23: 516.Google Scholar
  60. Greenberg, D. A., and Snyder, S. H., 1977, Selective labeling of alpha-noradre- nergic receptors in rat brain with [H]dihydroergocryptine, Life Sci. 20: 927–931.PubMedCrossRefGoogle Scholar
  61. Greengard, P., and Kebabian, J. W., 1974, Role of cyclic AMP in synaptic transmission in the mammalian peripheral nervous system. Fed. Proc. Fed. Am. Soc. Exp. Biol. 33: 1059–1067.Google Scholar
  62. Guillemin, R., Vargo, T., Rossier, J., Minick, S., Ling, N., Rivier, C., Vale, W., and Bloom, F., 1977, Beta-endorphin and adrenocorticotropin are secreted con-comitantly by the pituitary gland. Science 197: 1367–1369.PubMedCrossRefGoogle Scholar
  63. Haga, T., Ross, E. M., Anderson, H. J., and Gilman, A. G., 1977, Adenylate cyclase permanently uncoupled from hormone receptors in a novel variant of S49 mouse lymphoma cells, Proc. Natl. Acad. Sci. U.S.A. 74: 2016–2020.CrossRefGoogle Scholar
  64. Hamet, P., Lowder, S. C., Hardman, J. G., and Liddle, G. W., 1975, Effect of hypoglycemia on extracellular levels of cyclic AMP in man. Metabolism 24: 1139–1144.PubMedCrossRefGoogle Scholar
  65. Harden, T. K., Wolfe, B. B., Sporn, J. R., Poulos, B. K., and Molinoff, P. B., 1977a, Effects of 6–hydroxydopamine on the development of the beta- adrenergic receptor J denylate cyclase system in rat cerebral cortex, f. Pharmacol Exp. Ther. 203: 132–143.Google Scholar
  66. Harden, T. K., Wolfe, B. B., Sporn, J. R., Perkins, J. P., and Molinoff, P. B., 1977b, Ontogeny of beta-adrenergic receptors in rat cerebral cortex, Brain Res. 125: 99–108.PubMedCrossRefGoogle Scholar
  67. Harper, J. F., and Brooker, G., 1975, Femtomole sensitive radioimmunoassay for cyclic AMP and cyclic GMP after 2’0 acetylation by acetic anhydride in aqueous solution, J. Cyclic Nucleotide Res. 1: 207–218.PubMedGoogle Scholar
  68. Ho, H. C., Wirch, E., Stevens, F. C., and Wang, J. H., 1977, Purification of a Ca- activatable cyclic nucleodde phosphodiesterase from bovine heart by specific interaction with its Ca-dependent modulator protein,J. Biol. Chem. 252: 43–50.Google Scholar
  69. Hong, C. R., and Forrest, J. H., 1977, Effects of ablations of plasma (pc AMP) and nephrogenous urinary cyclic AMP (Nuc AMP) in renal insufficiency, Clm. Res. 25: 435A (abstract).Google Scholar
  70. Hornykiewicz, O., 1977, Psychopharmacological implications of dopamine and dopamine antagonists: A critical evaluation of current evidence, Annu. Rev. Pharmacol Toxicol 17: 545–559.Google Scholar
  71. Insel, P. A., Maguire, M. E., Gilman, A. G., Bourne, H. R., Coffino, P., and Melmon, K. L., 1976, Beta-adrenergic receptors and adenylate cyclase: Products of separate genes. Mol Pharmacol 12: 1062–1069.Google Scholar
  72. Jakobs, K. H., Saur, W., and Schultz, G., 1976, Reduction of adenylate cyclase activity in lysates of human platelets by the alpha-adrenergic component of epinephrine, 7. Cyclic Nucleotide Res. 2: 381–392.Google Scholar
  73. Johnson, G. L., Kaslow, H. R., and Bourne, H. R., 1978, Genetic evidence that cholera toxin substrates are regulatory components of adenylate cyclase, J. Biol Chem. 253: 7120–7123.PubMedGoogle Scholar
  74. Kahn, C. R., Baird, K., Flier, J. S., and Jarrett, D. B., 1977, Effects of autoantibodies to the insulin receptor on isolated adipocytes, J. Clin. Invest. 60: 1094–1106.CrossRefGoogle Scholar
  75. Kandel, J., Collier, R. J., and Chung, D. W., 1974, Interaction of fragment A from diphtheria toxin with nicotinamide adenine dinucleotide, J. Biol Chem. 249: 2088–2097.PubMedGoogle Scholar
  76. Kebabian, J. W., 1977, Biochemical regulation and physiological significance of cyclic nucleotides in the nervous system. Adv. Cyclic Nucleotide Res. 8: 421–508.PubMedGoogle Scholar
  77. Keely, S. L., and Corbin, J. D., 1977, Involvement of cAMP-dependent protein kinase in the regulation of heart contractile force. Am. J. Physiol 233: H269–H275.PubMedGoogle Scholar
  78. Kimura, N., and Nagata, N., 1977, The requirement of guanine nucleotides for glucagon stimulation of adenylate cyclase in rat liver plasma membranes, J. Biol Chem. 252: 3829–3835.PubMedGoogle Scholar
  79. Klee, C. B., 1977, Conformational transition accompanying the binding of Ca to the protein activator of 3’,5’-cyclic adenosine monophosphate phosphodiesterase, Biochemistry 16: 1017–1024.PubMedCrossRefGoogle Scholar
  80. Kretsinger, R. H., 1976, Evolution and function of calcium-binding proteins, Int. Rev. Cytol 46: 323–393.CrossRefGoogle Scholar
  81. Lefkowitz, R. J., and Hamp, M., 1977, Comparison of specificity of agonist and antagonist radioligand binding to beta-adrenergic receptors. Nature (London) 268: 453–454.CrossRefGoogle Scholar
  82. Lefkowitz, R. J., and Williams, L. T., 1977, Catecholamine binding to the beta- adrenergic receptor, Proc. Natl Acad. Sci. U.S.A. 74: 515–519.CrossRefGoogle Scholar
  83. Lefkowitz, R. J., Mukherjee, C., Coverstone, M., and Caron, M. G., 1974, Stereo- specific [H] (-)alprenolol binding sites, beta-adrenergic receptors and adenylate cyclase, Biochem. Biophys. Res. Commun. 60: 703–709.Google Scholar
  84. Lefkowitz, R. J., Limbird, L. E., Mukherjee, C., and Caron, M. G., 1976, The beta- adrenergic receptor and adenylate cyclase, Biochim. Biophys. Acta 457: 1–39.Google Scholar
  85. Lemaire, I., and Coffino, P., 1977, Coexpression of mutant and wild type protein kinase in lymphoma cells resistant to dibutyryl cyclic AMP, J. Cell Physiol 92: 437–445.PubMedCrossRefGoogle Scholar
  86. Levinson, S. L., and Blume, A. J., 1977, Altered guanine nucleotide hydrolysis as basis for increased adenylate cyclase acdvity after cholera toxin treatment, J. Biol Chem. 252: 3766–3774.PubMedGoogle Scholar
  87. Lilienfeld-Toal, H. v., Hesch, R. D., Hufner, M., and Mcintosh, C., 1974, Excretion of cyclic 3’,5’-adenosine monophosphate in renal insufficiency and primary hyperparathyroidism after stimulation with parathyroid hormone, Horm. Metab. Res. 6: 314–318.CrossRefGoogle Scholar
  88. Limbird, L. E., and Lefkowitz, R. J., 1976, Negative cooperativity among beta- adrenergic receptors in frog erythrocyte membranes, J. Biol. Cheyn. 251: 5007–5014.Google Scholar
  89. Limbird, L. E., and Lefkowitz, R. J., 1977, Resolution of beta-adrenergic receptor binding and adenylate cyclase activity by gel exclusion chromatography, J. Biol. Chem. 252:799–802.Google Scholar
  90. Lincoln, T. M., and Corbin, J. D., 1977, Adenosine 3’,5’-cyclic monophosphate- and guanosine 3,5’-cyclic monophosphate-dependent protein kinases: Possible homologous proteins, Proc. Natl. Acad. Sci. U.S.A. 74: 3239–3243.CrossRefGoogle Scholar
  91. Liuzzi, A., Chiodini, P. G., Botalla, L., Cremascoli, G., Muller, E., and Silvestrim, F., 1974, Decreased plasma growth hormone (GH) levels in acromegalics following CB154 (2–Br-alpha-ergocryptine) administration,J. Clin. Endocrinol. 38: 910–912.CrossRefGoogle Scholar
  92. Londos, C., Lin, M. C., Welton, A. F., Lad, P. M., and Rodbell, M., 1977, Reversible activation of hepatic adenylate cyclase by guanyl-5’-yl-(alpha,beta- methylene) diphosphonate and guanyl-5’-vl imidodiphosphate, J. Biol Chem. 252: 5180–5182.PubMedGoogle Scholar
  93. Madden, J., IV, Akil, H., Patrick, R. L., and Barchas, J. D., 1977, Stress-induced parallel changes in central opioid levels and pain responsiveness in the rat. Nature (London) 265: 358–360.CrossRefGoogle Scholar
  94. Maguire, M. E., Van Arsdale, P. M., and Gilman, A. G., 1976a, An agonist-specific effect of guanine nucleotides on binding to the beta-adrenergic receptor, Mol. Pharmacol. 12: 335–339.PubMedGoogle Scholar
  95. Maguire, M. E., Wiklund, R. A., Anderson, H. J., and Gilman, A. G., 1976b, Binding of [I]iodohydroxybenzylpindolol to putative beta-adrenergic receptors of rat glioma cells on other cell clones, J. Biol. Chem. 251: 1221–1231.Google Scholar
  96. Maguire, M. E., Ross, E. M., and Gilman, A. G., 1977, Beta-adrenergic receptor: Ligand binding properties and the interaction with adenylyl cyclase. Adv. Cyclic Nucleotide Res. 8: 1–83.PubMedGoogle Scholar
  97. Mains, R. E., and Eipper, B. A., 1976, Biosynthesis of adrenocorticotropic hormone in mouse pituitary tumor cells, J. Biol. Chem. 251: 4115–4120.Google Scholar
  98. Mains, R. E., Eipper, B. A., and Ling, N., 1977, Common precursor to corticotropins and endorphins, Proc. Natl. Acad. Sci. U.S.A. 74: 3014–3018.CrossRefGoogle Scholar
  99. Mickey, J., Tate, R., and Lefkowitz, R. J., 1975, Subsensitivity of adenylate cyclase and decreased beta-receptor binding after chronic exposure to (-)isoproter- enol in vitro,]. Biol. Chem. 250: 5727–5729.Google Scholar
  100. Milhaud, G., Rankin, J. C., Bolis, L., and Benson, A. A., 1977, Calcitonin: Its hormonal action on the gill, Proc. Natl. Acad. Sci. U.S.A. 74: 4693–4696.CrossRefGoogle Scholar
  101. Miller, R. J., Horn, A. S., and Iversen, L. L., 1974, The action of neuroleptic drugs on dopamine-stimulated adenosine cyclic 3’,5’-monophosphate production in rat neostriatum and limbic forebrain, Mol. Pharmacol. 10: 759–766.Google Scholar
  102. Monn, E., Osnes, J. B., and 0ye, L, 1976, Basal and hormone-induced urinary cyclic AMP in children with renal disorders, Acta Paediatr. Scand. 65: 739–745.Google Scholar
  103. Moss, J., and Vaughan, M., 1977a, Choleragen activation of solubilized adenylate cyclase: Requirement for GTP and protein activator for demonstration of enzymatic activity, Proc. Natl Acad. Sci U.S.A. 74: 4396–4400.CrossRefGoogle Scholar
  104. Moss, J., and Vaughan, M., 1977b, Mechanism of action of choleragen: Evidence for ADP-ribosyltransferase activity with arginine as an acceptor, J. Biol. Chem. 252: 2455–2457.Google Scholar
  105. Moss, J., Manganiello, V. C., and Vaughan, M., 1976, Hydrolysis of nicotinamide adenine dinucleotide by choleragen and its A protomer: Possible role in the activation of adenylate cyclase, Proc. Natl. Acad. Sci. U.S.A. 73: 4424–4427.Google Scholar
  106. Moss, J., Osborne, J. C., Jr., Fishman, P. M., Brewer, H. B., Jr., Vaughan, M., and Brady, R. O., 1977, Effect of gangliosides and substrate analogues on the hydrolysis of nicotinamide adenine dinucleotide by choleragen, Proc. Natl. Acad. Sci. U.S.A. 74: 74–78.CrossRefGoogle Scholar
  107. Murad, F., and Aurbach, G. D., 1977, Cyclic GMP in metabolism: Interrelationship of biogenic amines, hormones, and other agents, in: The Year in Metabolism 1977 ( N. Freinkel, ed.), pp. 1–32, Plenum Medical Book Company, New York.Google Scholar
  108. Nimrod, A., Tsafriri, A., and Lindner, H. R., 1977, In vitro induction of binding sites for hCG in rat granulosa cells by FSH, Nature (London) 267: 632–633.CrossRefGoogle Scholar
  109. Nissley, S. P., Rechler, M. M., Moses, A. C., Short, P. A., and Podskalny, J. M., 1977, Proinsulin binds to a growth peptide receptor and stimulates DNA synthesis in chick embryo fibroblasts. Endocrinology 101: 708–716.PubMedCrossRefGoogle Scholar
  110. Orly, J., and Schramm, M., 1976, Coupling of catecholamine receptor from one cell with adenylate cyclase from another cell by cell fusion, Proc. Natl. Acad. Sci. U.SA. 73: 4410–4414.CrossRefGoogle Scholar
  111. Perkins, J. P., and Moore, M. M., 1973, Characterization of the adrenergic receptors mediating a rise in cyclic 3’,5’-adenosine monophosphate in rat cerebral cortex,J. Pharmacol. Exp. Ther. 185: 371–378.Google Scholar
  112. Pfeuffer, T., 1977, GTP-binding proteins in membranes and the control of adenylate cyclase activity, J. Biol Chem. 252: 7224–7234.PubMedGoogle Scholar
  113. Rangel-Aldao, R., and Rosen, O. M., 1976, Dissociation and reassociation of the phosphorylated and nonphosphorylated forms of adenosine 3’,5’-mono- phosphate-dependent protein kinase from bovine cardiac muscle, J. Biol Chem. 251: 3375–3380.PubMedGoogle Scholar
  114. Rangel-Aldao, R., and Rosen, O. M., 1977, Effect of cAMP and ATP on the reassociation of phosphorylated and nonphosphorylated subunits of the cAMP-dependent protein kinase from bovine cardiac muscle,]. Biol Chem. 252: 7140–7145.Google Scholar
  115. Rechler, M. M., and Nissley, S. P., 1977, Somatomedins and related growth factors. Nature (London) 270: 665–666.CrossRefGoogle Scholar
  116. Rechler, M. M., Podskalny, J. M., and Nissley, S. P., 1977, Characterization of the binding of multiplication-stimulating activity to a receptor for growth polypeptides in chick embryo fibroblasts, J. Biol Chem. 252: 3898–3910.PubMedGoogle Scholar
  117. Rendell, M. S., Rodbell, M., and Berman, M., 1977, Activation of hepatic adenylate cyclase by guanyl nucleotides: Modeling of the transient kinetics suggests an “excited” state of GTP ase is a control component of the system, J. Biol Chem. 252: 7909–7912.Google Scholar
  118. Rinderknecht, E., and Humbel, R. E., 1976, Amino-terminal sequences of two polypeptides from human serum with nonsuppressible insulin-like and cell growth-promoting activities: Evidence for structural homology with insulin B chain, Proc. Natl Acad. Sei. U.S.A. 73: 4379–4381.Google Scholar
  119. Roberts, J. M., Insel, P. A., Goldfien, R. D., and Goldfien, A., 1977, Alpha- adrenoreceptors but not beta-adrenoreceptors increase in rabbit uterus with oestrogen. Nature (London) 270: 624–625.CrossRefGoogle Scholar
  120. Rodbell, M., Krans, H. M. J., Pohl, S. L., and Birnbaumer, L., 1971, The glucagon- sensitive adenyl cyclase system in plasma membranes of rat liver. IV. Effects of guanyl nucleotides on binding of I-glucagon, J. Biol. Chem. 246: 1872–1876.Google Scholar
  121. Ross, E. M., Maguire, M. E., Sturgill, T. W., Biltonen, R. L., and Oilman, A. G., 1977, Relationship between the beta-adrenergic receptor and adenylate cyclase, J. Biol Chem. 252: 5761–5775.PubMedGoogle Scholar
  122. Rossier, J., French, E. D., Rivier, C., Ling, N., Guillemin, R., and Bloom, F. E., 1977, Foot-shock induced stress increases beta-endorphin levels in blood but not brain. Nature (London) 270: 618–620.CrossRefGoogle Scholar
  123. Roth, J., Kahn, C. R., Lesniak, M. A., Görden, P., DeMeyts, P., Megyesi, K., Nerv ille, D. M., Jr., Gavin, J. R., Ill, Soil, A. H., Freychet, P., Goldfine, I. D., Bar, R. S., and Archer, J. A., 1975, Receptors for insulin, NSILA-s, and growth hormone: Applications to disease states in man, Recent Prog. Horm. Res. 31: 95–139.Google Scholar
  124. Rudolph, S. A., Schäfer, D. E., and Greengard, P., 1977, Effects of cholera enterotoxin on catecholamine-stimulated changes in cation fluxes, cell volume, and cyclic AMP levels in the turkey erythrocyte, J. Biol. Chem. 252: 7132–7139.Google Scholar
  125. Sattin, A., Rail, T. W., and Zanella, J., 1975, Regulation of cyclic adenosine 3’,5’- monophosphate levels in guinea-pig cerebral cortex by interaction of alpha- adrenergic and adenosine receptor activity,J. Pharmacol. Exp. Ther. 192: 22–32.Google Scholar
  126. Schultz, G., Hardman, J. G., Schultz, K., Davis, J. W., and Sutherland, E. W., 1973, A new enzymatic assay for guanosine 3’,5’-cyclic monophosphate and its application to the ductus deferens of the rat, Proc. Natl. Acad. Sei. U.S.A. 70: 1721–1725.CrossRefGoogle Scholar
  127. Schwoch, G., and Hilz, H., 1977, Protein-bound adenosine 3’,5’-monophosphate in liver of glucagon-treated rats, Eur. J. Biochem. 76: 269–276.Google Scholar
  128. Seeman, P., Ghau-Wong, M., Tedesco, J., and Wong, K., 1975, Brain receptors for antipsychotic drugs and dopamine: Direct binding assays, Proc. Natl. Acad. Sei. U.S.A. 72: 4376–4380.CrossRefGoogle Scholar
  129. Sheppard, J. R., 1977, Catecholamine hormone receptor differences identified on 3T3 and Simian virus-transformed 3T3 cells, Proc. Natl Acad. Sei. U.S.A. 74: 1091–1094.CrossRefGoogle Scholar
  130. Snyder, S. H., and Bennett, J. P., Jr., 1976, Neurotransmitter receptors in the brain: Biochemical identification, Annu. Rev. Physiol. 38: 153–175.Google Scholar
  131. Spiegel, A. M., Brown, E. M., Fedak, S. A., Woodard, G. J., and Aurbach, G. D., 1976a, Holocatalytic state of adenylate cyclase in turkey erythrocyte membranes: Formation with guanylylimidodiphosphate plus isoproterenol without effect on affinity of beta-receptor, J. Cyclic Nucleotide Res. 2: 47–56.Google Scholar
  132. Spiegel, A. M., Gerner, R. H., Murphy, D. L., and Aurbach, G. D., 1976b, Lithium does not inhibit the parathyroid hormone-mediated rise in urinary cyclic AMP and phosphate in humans,J. Clin. Endocrinol. 43: 1390–1393.CrossRefGoogle Scholar
  133. Spiegel, A. M., Downs, R. W., Jr., and Aurbach, G. D., 1977, Guanosine 5’, alpha- be ta-methylene, triphosphate, a novel GTP analog, causes persistent activation of adenylate cyclase: Evidence against pyrophosphorylation mechanism, Biochem. Biophys. Res. Commun.Google Scholar
  134. Strittmatter, W. J., Davis, J. N., and Lefkowitz, R. J., 1977a, Alpha-adrenergic receptors in rat parotid cells. I. Correlation of [H]dihydroergocryptine binding and catecholamine-stimulated potassium efflux, J. Biol. Chem. 252: 5472–5477.Google Scholar
  135. Strittmatter, W. J., Davis, J. N., and Lefkowitz, R. J., 1977b, Alpha-adrenergic receptors in rat parotid cells. 11. Desensitization of receptor binding sites and potassium efflux,J. Biol. Chem. 252: 5478–5482.Google Scholar
  136. Tallman, J. F., Smith, C. C., and Henneberry, R. C., 1977, Induction of functional beta-adrenergic receptors in He La cells, Proc. Natl. Acad. Sci. U.S.A. 74: 873–877.CrossRefGoogle Scholar
  137. Thorner, M. O., Chait, A., Aitken, M., Benker, G., Bloom, S. R., Mortimer, S. H., Sanders, P., Stuart-Mason, A., and Besser, G. M., 1975, Successful treatment of acromegaly, Br. Med. J. 1: 299–303.PubMedCrossRefGoogle Scholar
  138. Turtle, J. R., and Kipnis, D. M., 1967, An adrenergic receptor mechanism for the control of cyclic 3’,5’-adenosine monophosphate synthesis in tissues, Biochem. Biophys. Res. Commun. 28: 797–802.Google Scholar
  139. Ueda, T., Maeno, H., and Greengard, P., 1973, Regulation of endogenous phos-phorylation of specific proteins on synaptic membrane fractions from rat brain by adenosine 3’,5’-monophosphate,J. Biol. Chem. 248: 8295–8305.Google Scholar
  140. U’Prichard, D. G., Greenberg, D. A., and Snyder, S. H., 1977, Binding characteristics of a radiolabeled agonist and antagonist at central nervous system alpha- noradrenergic receptors, Mol. Pharmacol. 13: 454–473.PubMedGoogle Scholar
  141. Williams, L. T., and Lefkowitz, R. J., 1976, Alpha-adrenergic receptor identification by [H]dihydroergocryptine binding, Science 192: 791–793.PubMedCrossRefGoogle Scholar
  142. Williams, L. T., and Lefkowitz, R. J., 1977a, Slowly reversible binding of catechol-amine to a nucleotide-sensitive state of the beta-adrenergic receptor, J. Biol. Chem. 252: 7207–7213.Google Scholar
  143. Williams, L. T., and Lefkowitz, R. J., 1977b, Regulation of rabbit myometrial alpha-adrenergic receptors by estrogen and progesterone, J. Clin. Invest. 60: 815–818.CrossRefGoogle Scholar
  144. Williams, L. T., Mullikin, D., and Lefkowitz, R. J., 1976, Identification of alpha- adrenergic receptors in uterine smooth muscle membranes by pHJdihydroergocryptine binding,J. Biol. Chem. 251: 6915–6923.Google Scholar
  145. Williams, L. T., Gore, T. B., and Lefkowitz, R. J., 1977a, Ectopic beta-adrenergic receptor binding sites: Possible molecular basis of aberrant catecholamine responsiveness of an adrenocortical tumor adenylate cyclase, J. Clin. Invest. 59: 319–324.CrossRefGoogle Scholar
  146. Williams, L. T., Lefkowitz, R. J., Watanabe, A. M., Hathaway, D. R., and Besch, H. R., 1977b, Thyroid hormone regulation of beta-adrenergic receptor number, J. Biol. Chem. 252: 2787–2789.Google Scholar
  147. Wodnar-Filipowicz, A., and Lai, C. Y., 1976, Stimulation of adenylate cyclase in washed pigeon erythrocyte membrane with cholera toxin and its subunits, Arch. Biochem. Biophys. 176: 465–471.CrossRefGoogle Scholar
  148. Wolfe, B. P., Harden, T. K., and Molinoff, P. B., 1976, Beta-adrenergic receptors in rat liver: Effects of adrenalectomy, Proc. Natl Acad. Sci. U.S.A. 73: 1343–1347.CrossRefGoogle Scholar
  149. Wolfe, B. P., Harden, T. K., and Molinoff, P. B., 1977, In iniro study of beta- adrenergic receptors, Annu. Rev. Pharmacol. Toxicol. 17: 575–604.CrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1979

Authors and Affiliations

  • Gerald D. Aurbach
    • 1
  • Edward M. Brown
    • 1
  1. 1.Metabolic Diseases Branch, National Institute of Arthritis, Metabolism, and Digestive DiseasesNational Institutes of HealthBethesdaUSA

Personalised recommendations