Metabolism of Amino Acids and Organic Acids

  • Kay Tanaka
  • Leon E. Rosenberg


To those interested in mammalian biochemistry and metabolism, it has become axiomatic that pyruvate is a key intermediate in such major pathways as those concerned with anaerobic glycolysis, gluconeogenesis, and alanine formation. Until recently, there was a widespread belief among clinical investigators that inborn errors of pyruvate metabolism would not be found. This skepticism had two foundations: First, it was argued, serious defects in utilization of such a key intermediate would be incompatible with successful embryonic or fetal development, and thus affected humans would not survive the gestational interval. Second, since it has been known for some time that pyruvate metabolism is under major regulation by other events such as the redox state of the cell, it was held that the accumulation of pyruvate observed under diverse circumstances would always be secondary to some major tissue insult, rather than being a reflection of a primary, inborn enzymatic disturbance in pyruvate formation or disposition.


Lactic Acidosis Pyruvate Kinase Pyruvate Carboxylase Pyruvate Dehydrogenase Complex Pyruvate Decarboxylase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alberti, K. G., and Nattrass, M., 1977, Lactic acidosis, Lancet 2: 25–29.PubMedCrossRefGoogle Scholar
  2. Axelrod, B., 1967, Glycolysis, in: Metabolic Pathways, Vol. 1 ( D. M. Greenberg, ed.), pp. 112–145, Academic Press, New York.Google Scholar
  3. Ballard, F. J., and Hanson, R. W., 1969, Purification of phosphoenolpyruvate carboxykinase from the cytosol fraction of rat liver and the immunological demonstration of differences between this enzyme and the mitochondrial phosphenolpyruvate carboxykinase, J. Biol Chem. 244: 5625–5630.PubMedGoogle Scholar
  4. Barrera, C. R., Namihira, G., Hamilton, L., Münk, P., Eley, M. H., Linn, T. C., and Reed, L. J., 1972, a-Keto acid dehydrogenase complexes. XVI. Studies on the subunit structure of the pyruvate dehydrogenase complexes from bovine kidney and heart. Arch. Biochem. Biophys. 148: 343–358.CrossRefGoogle Scholar
  5. Bentle, L. A., and Lardy, H. A., 1976, Interaction of anions and divalent metal ions with phosphoenolpyruvate carboxykinase, J. Biol Chem. 251: 2916–2921.PubMedGoogle Scholar
  6. Bigley, R. H., Stenzel, P., Jones, R. T., Campos, J. O., and Koler, R. D., 1968, Tissue distribution of human pyruvate kinase isozymes, Enzymol Biol Clin. 9: 10–20.Google Scholar
  7. Blass, J. P., Avigan, J., and Uhlendorf, B. W., 1970, A defect in pyruvate decarboxylase in a child with an intermittent movement disorder, J. Clin. Invest. 49: 423–432.CrossRefGoogle Scholar
  8. Blass, J. P., Kark, R. A. P., and Menon, N. K., 1976, Low activities of the pyruvate and oxoglutarate dehydrogenase complexes in five patients with Friedreich’s N. Engl J. Med. 295: 62–67.CrossRefGoogle Scholar
  9. Brunette, M. G., Delvin, E., Hazel, B., and Scriver, C. R., 1972, Thiamine- responsive lactic acidosis in a patient with deficient low Km pyruvate carboxylase activity in liver. Pediatrics 50: 702–711.PubMedGoogle Scholar
  10. Gate, R. L., and Roche, T. E., 1978, A unifying mechanism for stimulation of mammalian pyruvate dehydrogenase kinase by reduced nicotinamide adenine dinucleotide, dihydrolipoamide, acetyl coenzyme A, or pyruvate, J. Biol Chem. 253: 496–503.Google Scholar
  11. Cederbaum, S. D., Blass, J. P., Minkoff, N., Brown, W. J., Cotton, M. E., and Harris, S. H., 1976, Sensitivity to carbohydrate in a patient with familial intermittent lactic acidosis and pyruvate dehydrogenase deficiency, Pediatr. Res. 10: 713–720.PubMedGoogle Scholar
  12. Chappel, J. B., 1968, Systems used for the transport of substrates into mitochondria, Br. Med. Bull. 24: 150–157.Google Scholar
  13. Clayton, B. E., Dobbs, R. H., and Patrick, A. D., 1967, Leigh’s subacute necrotizing encephalopathy: Clinical and biochemical study with special reference to therapy with lipoate. Arch. Dis. Child. 42: 467–478.CrossRefGoogle Scholar
  14. Cooper, J. R., Pincus, J. H., Itokawawa, Y., and Piros, K., 1970, Experience with phosphoryl transferase inhibition in subacute necrotizing encephalomyelopa- \hy, N.Engl J. Med. 283: 793–795.PubMedCrossRefGoogle Scholar
  15. Cremer, J. E., and Teal, H. M., 1974, The activity of pyruvate dehydrogenase in rat brain during postnatal development, FEBS Lett. 39: 17–20.PubMedCrossRefGoogle Scholar
  16. Ebels, E. J., Blokzii, E. J., and Troelstra, J. A., 1965, A Wernicke-like encephalo- myelopathy in children (Leigh), an inborn error of metabolism: Report of five cases with emphasis on its familial incidence, Helv. Paediatr. Acta 23: 310–324.Google Scholar
  17. FarreU, D. F., Clark, A. F., Scott, C. R., and Wennberg, R. P., 1975, Absence of pyruvate decarboxylase activity in man: A cause of congenital lactic acidosis. Science 187: 1082–1084.Google Scholar
  18. Frey, W. H., and Utter, M. F., 1977, Binding of acetyl-CoA to chicken liver pyruvate carboxylase,J. Biol. Chem. 252: 51–56.Google Scholar
  19. Gottschalk, E. M., Mayer, F., Klostermann, A., and Seubert, W., 1976, Determination of molecular weight and molecular structure of rat-liver pyruvate carboxylase, Eur. J. Biochem. 64: 411–421.Google Scholar
  20. Grover, W. D., Auerbach, V. H., and Patel, M. S., 1972, Biochemical studies and therapy in subacute necrotizing encephalopathy ( Leigh’s syndrome), J. Pediatr. 81: 39–44.PubMedCrossRefGoogle Scholar
  21. Hayakawa, T., Kanzaki, T., Kitamura, T., Fukuyoshi, Y., Sakurai, Y., Koike, K., Suematsu, T., and Koike, M., 1969, Mammalian a-keto acid dehydrogenase complexes. V. Resolution and reconstitution studies of the pig heart pyruvate dehydrogenase complex, y. ßioJ. Chem. 244: 3660–3670.Google Scholar
  22. Haworth, J. C., Perry, T. L., Blass, J. P., Hansen, S., and Urquhart, N., 1976, Lactic acidosis in three sibs due to defects in both pyruvate dehydrogenase and a-ketoglutarate dehydrogenase complex, Pediatrics 58: 564–572.PubMedGoogle Scholar
  23. Hommes, F. A., Polman, H. A., and Reerink, J. D., 1968, Leigh’s encephalomyelo- pathy: An inborn error of gluconeogenesis. Arch. Dis. Child. 43: 423–426.CrossRefGoogle Scholar
  24. Hommes, F. A., Bendien, K., Elema, J. D., Bremer, H. J., and Lombeck, I., 1976, Two cases of phosphoenolpyruvate carboxykinase deficiency. Acta Paediatr. Scand. 65: 233–240.PubMedCrossRefGoogle Scholar
  25. Hübner, G., Neef, H., Schellenberger, A., Bernhardt, R., and Khailova, L. S., 1978, Two-center mechanism for the oxidative decarboxylation of pyruvate by the pyruvate decarboxylating component of the pyruvate dehydrogenase complex of pigeon breast muscle, FEBS Lett. 86: 6–8.PubMedCrossRefGoogle Scholar
  26. Huckabee, W. E., 1961a, Abnormal resting blood lactate. I. The significance of hyperlactatemia in hospitalized patients. Am. J. Med. 30: 833–839.CrossRefGoogle Scholar
  27. Huckabee, W. E., 1961b, Abnormal resting blood lactate. II. Lactic acidosis. Am. J. Med. 30: 840–848.CrossRefGoogle Scholar
  28. lynedjian, P. B., Ballard, F. J., and Hanson, R. W., 1975, The regulation of phosphoenolpyruvate carboxykinase ( GTP) synthesis in rat kidney cortex, J. Biol Chem. 250: 5596–5603.Google Scholar
  29. Jope, R., and Blass, J. P., 1976, The regulation of pyruvate dehydrogenase in brain in vivo, J. Neurochem. 26: 709–714.PubMedCrossRefGoogle Scholar
  30. Kapoor, M., 1976, Pyruvate kinase: A model allosteric enzyme for demonstration of structure-function relationship, Int. J. Biochem. 7: 439–443.Google Scholar
  31. Kark, R. A. P., Blass, J. P., and Engel, W. K., 1974, Pyruvate oxidation in neuromuscular diseases, Neurology 24; 964–971.PubMedGoogle Scholar
  32. Keech, D. B., and Utter, M. F., 1963,: Pyruvate carboxylase. 11. Properties,J. Biol Chem. 238: 2609–2614.Google Scholar
  33. Koike, K., Hamada, M., Tanaka, N., Otsuka, K., Ogasahara, K., and Koike, M., 1974, Properties and subunit composition of the pig heart 2–oxoglutarate dehydrogenase, J. Biol Chem. 249: 3836–3842.PubMedGoogle Scholar
  34. Lardy, H. A., Paetkau, V., and Walter, P., 1965, Paths of carbon in gluconeogenesis and lipogenesis: The role of mitochondria in supplying precursors of phosphoenolpyruvate, Proc. Natl Acad. Sci. U.S.A. 53: 1410–1415.CrossRefGoogle Scholar
  35. Moreno, F. J., Sanchez-Urruttia, L., Medina, J. M., Sánchez-Medina, F., and Mayer, F., 1975, Stimulation of phosphoenolpyruvate carboxykinase (guano- sine triphosphate) activity by low concentrations of circulating glucose in perfused rat liver, Biochem. J. 150: 51–58.PubMedGoogle Scholar
  36. Nordlie, R. C., and Lardy, H. A., 1963, Mammalian liver phosphoenolpyruvate carboxykinase activities, J. Biol Chem. 238: 2259–2263.PubMedGoogle Scholar
  37. Pincus, J. H., Itokawa, Y., and Cooper, J. R., 1969, Enzyme-inhibiting factor in subacute necrotizing encephalomyelopathy, Neurology 19: 841–845.PubMedGoogle Scholar
  38. Reed, L. J., and Cox, D. J., 1970, Multienzyme complexes, in: The Enzymes, Vol 1, 3rd ed. ( P. D. Boyer, ed.), pp. 213–240, Academic Press, New York.CrossRefGoogle Scholar
  39. Relman, A. S., 1978, Lactic acidosis and a possible new treatment, N. Engl J. Med. 298: 564–565.CrossRefGoogle Scholar
  40. Robinson, B. H., 1971, Transport of phosphoenolpyruvate by the tricarboxylate transporting system in mammalian mitochondria, FEBS Lett. 14: 309–312.PubMedCrossRefGoogle Scholar
  41. Robinson, B. H., and Sherwood, W. G., 1975, Pyruvate dehydrogenase phosphatase deficiency: A cause of congenital chronic acidosis in infancy, Pediatr. Res. 9: 935–939.Google Scholar
  42. Robinson, B. H., Taylor, J., and Sherwood, W. G., 1977, Deficiency of dihydroli- poyl dehydrogenase (a component of the pyruvate and a-ketoglutarate dehy-drogenase complex): A cause of congenital chronic lactic acidosis in infancy, Pediatr. Res. 11: 1198–1202.Google Scholar
  43. Roche, T. E., and Reed, L. J., 1972, Function of the nonidentical subunits of mammalian pyruvate dehydrogenase, Biochem. Biophys. Res. Commun. 48: 840–846.Google Scholar
  44. Sakurai, Y., Fukuyoshi, Y., Hamada, M., Hayakawa, T., and Koike, M., 1970, Mammalian a-keto acid dehydrogenase complexes. VI. Nature of the multiple forms of pig heart lipoamide dehydrogenase, J. Biol Chem. 245: 4453–4462.Google Scholar
  45. Saudubray, J. M., Marsac, C., Charpentier, C., Cathelineau, C. L., Besson-Leaud, M., and Leroux, J. P., 1976, Neonatal congenital lactic acidosis with pyruvate carboxylase deficiency in two siblings. Acta Paediatr. Scand. 65: 717–724.PubMedGoogle Scholar
  46. Scrutton, M. C., and White, M. D., 1974, Purification and properties of human liver pyruvate carboxylase, Biochem. Med. 9: 271–292.CrossRefGoogle Scholar
  47. Soling, H. D., Kleineke, J., WiUms, B., Janson, G., and Kuhn, A., 1973, Relationship between intracellular distribution of phosphoenolpyruvate carboxyki- nase, regulation of gluconeogenesis and energy cost of glucose formation, Eur.J.Biochem. 37: 233–243.PubMedCrossRefGoogle Scholar
  48. Stromme, J. H., Borud, O., and Moe, P. J., 1976, Fatal lactic acidosis in a newborn attributable to a congenital defect of pyruvate dehydrogenase, Pediatr. Res. 10: 62–66.PubMedCrossRefGoogle Scholar
  49. Tanaka, K., 1975, Disorders of organic acid metabolism, in: Biology of Brain Dysfunction, Vol. 3 ( G. E. Gaull, ed.), pp. 145–214, Plenum Press, New York.Google Scholar
  50. Tanaka, K., and Kerley, R. C., 1975, Synergistic hypoglycemic effects of lysine and tryptophan with hypoglycin A: Interrelationship between the inhibition of glutaryl Co A dehydrogenase and gluconeogenesis, in: Hypoglycin ( E. A. Kean, ed.), pp. 163–173, Academic Press, New York.Google Scholar
  51. Tanaka, K. R., Valentine, W. N., and Miwa, S., 1962, Pyruvate kinase ( PK) deficiency hereditary nonspherocytic hemolytic anemia. Blood 19: 267–295.Google Scholar
  52. Tang, T. T., Good, T. A., Dyken, P. R., Johnsen, S. D., McGreadie, S. R., Sy, S. T., Lardy, H. A., and Rudolph, F. B., 1972, Pathogenesis of Leigh’s encephalo- myelopathy, y. Pediatr. 81: 189–190.CrossRefGoogle Scholar
  53. Taylor, J., Robinson, B. H., and Sherwood, W. G., 1978, A defect in branched chain amino acid metabolism in a patient with congenital lactic acidosis due to dihydrolipoyl dehydrogenase deficiency, Pediatr. Res. 12: 60–62.PubMedCrossRefGoogle Scholar
  54. Utter, M. F., and Keech, D. B., 1963, Pyruvate carboxylase. I. Nature of reaction, f. Biol. Chem. 238: 2603–2608.Google Scholar
  55. Utter, M. F., and Kolenbrander, H. M., 1972, Formation of oxaloacetate by CO2 fixation on phosphoenolpyruvate, in: The Enzymes, Vol. 6 ( P. D. Boyer, ed.), pp. 117–168, Academic Press, New York.CrossRefGoogle Scholar
  56. Valentine, W. N., and Tanaka, K. R., 1978, Pyruvate kinase and other enzyme deficiency hereditary hemolytic anemia, in: The Metabolic Basis of Inherited Disease, 4th ed. ( J. B. Stanbury, J. B. Wyngaarden, and D. S. Fredrickson, eds.), pp. 1410–1429, McGraw-Hill, New York.Google Scholar
  57. Wieland, O. H., Siess, E. A., Weiss, L., Loffler, G., Patzelt, C., Portenhauser, R., Hartmann, U., and Schirmnn, A., 1973, Regulation of the mammalian pyruvate dehydrogenase complex by covalent modification, Symp. Soc. Exp. Biol. 27: 371–400.Google Scholar
  58. Worsley, H. E., Brookfield, R. W., Elwood, J. S., Noble, R. L., and Taylor, W. H., 1965, Lactic acidosis with necrotizing encephalopathy in two sibs. Arch. Dis. Child. 40: 492–501.CrossRefGoogle Scholar
  59. Yoshida, T., Tada, K., Konno, T., and Arakawa, T., 1969, Hyperalaninemia with pyruvicemia due to pyruvate carboxylase deficiency of the liver, Tohoku f. Exp. Med. 99: 121–128.Google Scholar

Copyright information

© Plenum Publishing Corporation 1979

Authors and Affiliations

  • Kay Tanaka
    • 1
  • Leon E. Rosenberg
    • 1
  1. 1.Department of Human GeneticsYale University School of MedicineNew HavenUSA

Personalised recommendations