Advertisement

ENDOR and ELDOR on Iron-Sulfur Proteins

  • Richard H. Sands

Abstract

It is fitting that a book of this nature should include a chapter on the application of double resonance techniques to the study of iron-sulfur proteins. Magnetic resonance techniques have permitted a detailed study of the nature of the active sites of many proteins that had not been possible previously. Among these is the whole class of iron-sulfur proteins. These proteins have been implicated, primarily as electron carriers, in the mediation of a wide variety of biochemical reactions in plants, bacteria, and mammals. They are involved in photosynthesis, oxidative phosphorylation, nitrogen fixation, and many hydroxylations, to name but a few important functions.

Keywords

Electron Paramagnetic Resonance Spectrum Iron Atom Electron Paramagnetic Resonance Signal ENDOR Spectrum Mossbauer Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. C. M. Tsibris, and R. W. Woody, Structural Studies of Iron-Sulfur Proteins, Coord. Chem. Revs. 5, 417 (1970).CrossRefGoogle Scholar
  2. 2.
    D. O. Hall, R. Cammack, and K. K. Rao, in Iron in Biochemistry and Medicine (A. Jacob and M. Worwood, eds.), Chapter 8, p. 279, Academic Press, London (1974).Google Scholar
  3. 3.
    G. Palmer, in The Enzymes (P. D. Boyer, ed.), Vol. XII, 3rd ed., pp. 1–56, Academic Press, New York (1975).Google Scholar
  4. 4.
    W. Lovenberg (ed.), Iron-Sulfur Proteins, Vols. I–III, Academic Press, New York (1973).Google Scholar
  5. 5.
    R. G. Shulman, P. Eisenberger, W. E. Blumberg, and N. A. Stombaugh, Proc. Nat. Acad. Sci. USA 72, 4003 (1975).CrossRefGoogle Scholar
  6. 6.
    W. R. Dunham, G. Palmer, R. H. Sands, and A. J. Bearden, Biochim. Biophys. Acta 253, 373 (1971).CrossRefGoogle Scholar
  7. 7.
    E. T. Adman, L. C. Sieker, and L. H. Jensen, J. Biol. Chem. 251, 3801 (1976).Google Scholar
  8. 8.
    C. W. Carter, Jr., S. T. Freer, Ng H. Xuong, R. A. Alden, and J. Kraut, Cold Spr. Harb. Symp. Quant. Biol. 36, 381 (1971).CrossRefGoogle Scholar
  9. 9.
    A. Abragam and B. Bleaney, EPR of Transition Ions, Oxford University Press (Clarendon), London, New York (1970).Google Scholar
  10. 10.
    J. Peisach, W. E. Blumberg, E. T. Lode, and M. J. Coon, J. Biol. Chem. 246, 5877 (1971).Google Scholar
  11. 11.
    F. K. Kneubühl and B. Natterer, Helv. Phys. Acta 34, 710 (1961).Google Scholar
  12. 12.
    R. Neiman and D. Kivelson, J. Chem. Phys. 35, 156 (1961).CrossRefGoogle Scholar
  13. 13.
    H. R. Gersmann and J. D. Swalen, J. Chem. Phys. 36, 3221 (1962).CrossRefGoogle Scholar
  14. 14.
    M. M. Malley, J. Molec. Spectrosc. 17, 210 (1965).CrossRefGoogle Scholar
  15. 15.
    J. Fritz, R. Anderson, J. Fee, G. Palmer, R. H. Sands, W. H. Orme-Johnson, H. Beinert, J. C. Tsibris, and I. C. Gunsalus, Biochim. Biophys. Acta 253, 110 (1971).CrossRefGoogle Scholar
  16. 16.
    T. Moriya, Phys. Rev. 120, 91 (1960).CrossRefGoogle Scholar
  17. 17.
    J. Owen and C. M. Harris, in Electron Paramagnetic Resonance (S. Geschwind, ed.), Chapter 6, Plenum Press, New York (1972).Google Scholar
  18. 18.
    See, for example, A. Carrington and A. C. McLachlan, Introduction to Magnetic Resonance, p. 46, Harper and Row, New York (1967).Google Scholar
  19. 19.
    K. Schepler, Electron Spin-Spin Interactions in Three Biological Systems, Ph.D. Thesis University of Michigan (1975).Google Scholar
  20. 20.
    J. W. Fritz ENDOR Studies of Tetraphenylpyrryl and Four Ferredoxins, Ph.D. Thesis, University of Michigan (1969).Google Scholar
  21. 21.
    J. S. Hyde and A. H. Maki, J. Chem. Phys. 40, 3117 (1964).CrossRefGoogle Scholar
  22. 22.
    J. S. Hyde, J. Chem. Phys. 43, 1806 (1965).CrossRefGoogle Scholar
  23. 23.
    J. A. Reid, Electron-Nuclear Double Resonance Spectrometry on a High Potential Iron Protein, Ph.D. Thesis, University of Michigan (1976).Google Scholar
  24. 24.
    J. S. Hyde, J. C. W. Chien, and J. H. Freed, J. Chem. Phys. 48, 4211 (1968).CrossRefGoogle Scholar
  25. 25.
    D. O. Hall, R. Cammack, and K. K. Rao, in Iron in Biochemistry and Medicine (A. Jacobs and M. Worwood, eds.), pp. 279–334, Academic Press, London, New York (1974).Google Scholar
  26. 26.
    J. Van Beenmen, J. deLey, D. O. Hall, R. Cammack, and K. K. Rao, FEBS Lett. 59, 146 (1975).CrossRefGoogle Scholar
  27. 27.
    M. C. W. Evans, R. V. Smith, A. Telfer, and R. Cammack, in Proceedings of the 1st European Biophys. Congress (E. Broda, A. Locker, and H. Springer-Lederer, eds.), Vol. 4, pp. 115–119, Vienna Medical Academy (1971).Google Scholar
  28. 28.
    L. Kerscher, D. Oesterhelt, R. Cammack, and D. O. Hall, Eur. J. Biochem. 71, 101 (1976).CrossRefGoogle Scholar
  29. 29.
    D. O. Hall and M. C. W. Evans, Nature (London) 223, 1342 (1969).CrossRefGoogle Scholar
  30. 30.
    J. C. M. Tsibris, R. L. Tsai, I. C. Gunsalus, W. H. Orme-Johnson, W. H. Hansen, and H. Beinert, Proc. Nat. Acad. Sci. USA 59, 959 (1968).CrossRefGoogle Scholar
  31. 31.
    E. Miinck, P. G. Debrunner, J. C. M. Tsibris, and I. C. Gunsalus, Biochemistry 11, 855 (1972).CrossRefGoogle Scholar
  32. 32.
    W. H. Orme-Johnson and H. Beinert, J. Biol. Chem. 244, 6143 (1969).Google Scholar
  33. 33.
    R. H. Sands and W. R. Dunham, Quart. Revs. Biophys. 7, 443 (1975).CrossRefGoogle Scholar
  34. 34.
    J. J. Mayerle, R. B. Frankel, R. H. Holm, J. A. Ibers, W. Phillips, and J. F. Weiher, Proc. Nat. Acad. Sci. USA 70, 2429 (1973).CrossRefGoogle Scholar
  35. 35.
    L. Que, Jr., R. H. Holm, and L. E. Mortenson, J. Amer. Chem. Soc. 97, 463 (1975).CrossRefGoogle Scholar
  36. 36.
    W. R. Dunham, A. Bearden, I. Salmeen, G. Palmer, R. H. Sands, W. H. Orme-Johnson, and H. Beinert, Biochim. Biophys. Acta 253, 134 (1971).CrossRefGoogle Scholar
  37. 37.
    W. A. Eaton, G. Palmer, J. A. Fee, T. Kimura, and W. Lovenberg, Proc. Nat. Acad. Sci. USA 68, 3015 (1971).CrossRefGoogle Scholar
  38. 38.
    G. Palmer, W. R. Dunham, J. A. Fee, R. H. Sands, T. Iizuka, and I. Yonetani, Biochim. Biophys. Acta 245, 201 (1971).CrossRefGoogle Scholar
  39. 39.
    M. Poe, W. D. Phillips, J. D. Gleckson, and A. San Pietro, Proc. Nat. Acad. Sci. USA 68, 68 (1971).CrossRefGoogle Scholar
  40. 40.
    I. T. Salmeen and G. Palmer, Arch. Biochem. Biophys. 150, 767 (1972).CrossRefGoogle Scholar
  41. 41.
    S. De Benedetti, F. De S. Barros, and G. R. Hoy, Ann. Rev. Nucl. Sci. 16, 31 (1966).CrossRefGoogle Scholar
  42. 42.
    Y. I. Shetna, P. W. Wilson, R. E. Hansen, and H. Beinert, Proc. Nat. Acad. Sci. USA 55, 1263 (1964).CrossRefGoogle Scholar
  43. 43.
    H. Brintzinger, G. Palmer, and R. H. Sands, Proc. Nat. Acad. Sci. USA 55, 397 (1966).CrossRefGoogle Scholar
  44. 44.
    W. E. Blumberg and J. Peisach, in Non-Heme Iron Proteins (A. San Pietro, ed.), pp. 101–107, Antioch Press, Yellow Springs, Ohio (1965).Google Scholar
  45. 45.
    J. F. Gibson, D. O. Hall, J. H. M. Thornley, and F. R. Whattey, Proc. Nat. Acad. Sci. USA 56, 987 (1966).CrossRefGoogle Scholar
  46. 46.
    J. H. M. Thornley, J. F. Gibson, F. R. Whatley, and D. O. Hall, Biochem. Biophys. Res. Commun. 24, 877 (1966).CrossRefGoogle Scholar
  47. 47.
    W. H. Orme-Johnson, R. E. Hansen, H. Beinert, J. C. M. Tsibris, R. C. Bartholomaus, and I. C. Gunsalus, Proc. Nat. Acad. Sci. USA 60, 368 (1968).CrossRefGoogle Scholar
  48. 48.
    D. V. Der Vartanian, W. H. Orme-Johnson, R. E. Hansen, H. Beinert, R. L. Tsai, J. C. Tsibris, R. C. Bartholomaus, and I. C. Gunsalus, Biochem. Biophys. Res. Commun. 26, 569 (1967).CrossRefGoogle Scholar
  49. 49.
    L. H. Strong, Biophysical Studies on Selected Iron-Sulfur Proteins, Ph.D. Thesis, University of Michigan (1976).Google Scholar
  50. 50.
    R. E. Anderson, Study of the Active Sites of Ferredoxin from Synechococcus lividus, Ph.D. Thesis, Univ. Michigan (1972).Google Scholar
  51. 51.
    R. E. Anderson, W. R. Dunham, R. H. Sands, A. J. Bearden, and H. L. Crespi, Biochem. Biophys. Acta 408, 306 (1975).CrossRefGoogle Scholar
  52. 52.
    K. Das, H. Deklerk, K. Sletten, and R. G. Bartsch, Biochim. Biophys. Acta 140, 291 (1967).Google Scholar
  53. 53.
    S. M. Tedro, T. E. Meyer, and M. D. Kamen, J. Biol. Chem. 251, 129 (1976).Google Scholar
  54. 54.
    T. E. Meyer, S. M. Tedro, and M. D. Kamen, private communication.Google Scholar
  55. 55.
    S. M. Tedro, T. E. Meyer, and M. D. Kamen, J. Biol. Chem. 249, 1182 (1974).Google Scholar
  56. 56.
    N. R. Orme-Johnson, W. H. Orme-Johnson, R. E. Hansen, H. Beinert, and Y. Hatefi, Biochem. Biophys. Res. Commun. 44, 446 (1971).CrossRefGoogle Scholar
  57. 57.
    T. Ohnishi, T. Asakura, T. Yanetani, and B. Chance, J. Biol. Chem. 246, 5960 (1971).Google Scholar
  58. 58.
    F. J. Ruzicka, and H. Beinert, Biochem. Biophys. Res. Commun. 58, 556 (1974).CrossRefGoogle Scholar
  59. 59.
    N. A. Stombaugh, R. H. Burris, and W. H. Orme-Johnson, J. Biol. Chem. 248, 7951 (1973).Google Scholar
  60. 60.
    T. Matsumoto, J. Tobari, K. Suzuki, T. Kimura, and T. T. Tchen, J. Biochem. 79, 937 (1976).Google Scholar
  61. 61.
    P. W. Johnson, and E. Canale-Parola, Arch. Mikrobiol. 89, 3363 (1973).CrossRefGoogle Scholar
  62. 62.
    R. N. Mullinger, R. Cammack, K. K. Rao, D. O. Hall, D. P. E. Dickson, C. E. Johnson, J. D. Rush, and A. Simopoulos, Biochem. J. 151, 75 (1975).Google Scholar
  63. 63.
    C. W. Carter, Jr., J. Krant, S. J. Freer, R. A. Alden, L. C. Sieker, E. Adman, and L. H. Jensen, Proc. Nat. Acad. Sci. USA 69, 3526 (1972).CrossRefGoogle Scholar
  64. 64.
    R. Cammack, Biochem. Biophys. Res. Commun. 54, 548 (1973).CrossRefGoogle Scholar
  65. 65.
    See, for example, R. Averill, T. Herskovitz, R. H. Holm, and J. A. Ibers, J. Amer. Chem. Soc. 95, 3523 (1973).CrossRefGoogle Scholar
  66. 66.
    T. Herskovitz, B. A. Averill, R. H. Holm, J. A. Ibers, W. D. Phillips, and J. F. Weiher, Proc. Nat. Acad. Sci. USA 69, 2437 (1972).CrossRefGoogle Scholar
  67. 67.
    L. Que, Jr., M. A. Bobrik, J. A. Ibers, and R. H. Holm, J. Amer. Chem. Soc. 96, 4168 (1974).CrossRefGoogle Scholar
  68. 68.
    B. Antanaitis and T. Moss, Biochim. Biophys. Acta 405, 262 (1975).Google Scholar
  69. 69.
    M. S. Goldsmith, J. A. Fee, W. R. Dunham, and R. H. Sands, to be published.Google Scholar
  70. 70.
    T. Ohnishi, D. B. Winter, J. Lim, and T. E. King, Biochem. Biophys. Res. Commun. 60, 1017 (1974).CrossRefGoogle Scholar
  71. 71.
    T. Ohnishi, W. J. Ingledew, and S. Shiraishi, Biochem. J. 153, 39 (1976).Google Scholar
  72. 72.
    W. J. Ingledew, and P. J. Hailing, FEBS Lett. 67, 90 (1976).CrossRefGoogle Scholar
  73. 73.
    J. A. Fee, private communication.Google Scholar
  74. 74.
    H. Bothe, and M. G. Yates, private communication.Google Scholar
  75. 75.
    W. V. Sweeney, J. C. Rabinowitz, and D. C. Yoch, J. Biol. Chem. 250, 7842 (1975).Google Scholar
  76. 76.
    J. A. Zubieta, R. Mason, and J. R. Postgate, Biochem. J. 133, 851 (1973).Google Scholar
  77. 77.
    W. J. Orme-Johnson, Biochem. Soc. Trans. 1, 30 (1973).Google Scholar
  78. 78.
    R. Mathews, S. Charlton, R. H. Sands, and G. Palmer, J. Biol. Chem. 249, 4326 (1974).Google Scholar
  79. 79.
    W. D. Phillips, and M. Poe, in Iron-Sulfur Proteins (W. Lovenberg, ed.), Vol. II, p. 255, Academic Press, New York (1973).Google Scholar
  80. 80.
    R. A. Mathews, Chemical and Physical Studies of a Bacterial Ferredoxin, Ph.D. Thesis, University of Michigan (1973).Google Scholar
  81. 81.
    J. D. Memory, Quantum Theory of Magnetic Resonance Parameters, McGraw-Hill, New York (1968).Google Scholar
  82. 82.
    R. E. Anderson, G. Anger, L. Peterson, A. Ehrenberg, R. Cammack, D. O. Hall, R. Mullinger, and K. K. Rao, Biochim. Biophys. Acta 376, 63 (1974).Google Scholar

Copyright information

© Plenum Press, New York 1979

Authors and Affiliations

  • Richard H. Sands
    • 1
  1. 1.Biophysics Research Division, Institute of Science and Technology, and Department of PhysicsUniversity of MichiganAnn ArborUSA

Personalised recommendations