ENDOR on Hemes and Hemoproteins

  • Charles P. Scholes


Heme compounds within proteins are crucial in many biological areas; for example, in carrying oxygen (hemoglobin), in storing oxygen (myoglobin), and in transporting electrons (cytochromes). A better knowledge of the electronic structure of the heme and its immediate protein environs should lead to a more complete understanding of how heme functions in its biological roles. The technique of endor allows precise measurement of the hyperfine interaction of paramagnetic heme electrons near the Fe3+ site of heme with many nearby nuclei. The strength of hyperfine interactions gives detailed information on the electronic distribution at heme and its neighbors and thus gives insight into the details of the electronic wave function of heme. Since heme represents the active center of the protein, such detailed information should lead to a more complete, even quantum mechanical, understanding of the relationship between heme’s electronic structure and its function in proteins.


ENDOR Spectrum ENDOR Line ENDOR Signal Ferric Heme Sixth Ligand 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Antonini and M. Brunori, Hemoglobin and Myoglobin in Their Reactions with Ligands, Chap. 9, North-Holland Publishing Co., Amsterdam, The Netherlands (1971).Google Scholar
  2. 2.
    H. C. Watson, in Progress in Stereochemistry (B. J. Aylett and M. M. Harris, ed.), Vol. 4, pp. 299–333, Butterworth, London (1969).Google Scholar
  3. 3.(a)
    J. E. Bennett, J. F. Gibson, and D. J. E. Ingram, Proc. Roy. Soc. (London) A240, 67–82 (1957).Google Scholar
  4. (b).
    J. E. Bennett, J. F. Gibson, D. J. E. Ingram, T. M. Haughton, G. A. Kerkut, and K. A. Munday, Proc. Roy. Soc. (London) A262, 395–408 (1961).Google Scholar
  5. (c).
    G. A. Helcké, D. J. E. Ingram, and E. F. Slade, Proc. Roy. Soc. (London) B169, 275–288 (1968).Google Scholar
  6. 4.(a)
    M. F. Perutz, A. R. Fersht, S. R. Simon, and G. C. K. Roberts, Biochemistry 13, 2174–2186 (1974).CrossRefGoogle Scholar
  7. (b).
    M. F. Perutz, E. J. Heidner, J. E. Ladner, J. G. Beetlestone, C. Ho, and E. F. Slade, Biochemistry 13, 2187–2200 (1974).CrossRefGoogle Scholar
  8. (c).
    M. F. Perutz, J. E. Ladner, S. R. Simon, and C. Ho, Biochemistry 13, 2163–2173 (1974).CrossRefGoogle Scholar
  9. 5.
    G. Feher, R. A. Isaacson, C. P. Scholes, and R. L. Nagel, Ann. N.Y. Acad. Sci. 222, 86–101 (1973).CrossRefGoogle Scholar
  10. 6.(a)
    R. E. Dickerson, T. Takano, D. Eisenberg, O. B. Kallai, L. Samson, A. Cooper, and E. Margoliash, J. Biol. Chem. 246, 1511–1535 (1971).Google Scholar
  11. (b).
    T. Takano, O. B. Kallai, R. Swanson, and R. E. Dickerson, J. Biol. Chem. 248, 5234–5255 (1973).Google Scholar
  12. (c).
    F. R. Salemme, J. Kraut, and M. D. Kamen, J. Biol. Chem. 248, 7701–7716 (1973).Google Scholar
  13. 7.
    C. P. Scholes, J. Chem. Phys. 52, 4890–4895 (1970).CrossRefGoogle Scholar
  14. 8.
    M. F. Rettig, P. S. Han, and T. P. Das, Theoret. Chim. Acta (Berlin) 12, 178–182 (1968).CrossRefGoogle Scholar
  15. 9.
    H. M. McConnell, J. Chem. Phys. 24, 764–766 (1956).CrossRefGoogle Scholar
  16. 10.(a)
    R. G. Shulman, S. H. Glarum, and M. Karplus, J. Molec. Biol. 57, 93–115 (1971).CrossRefGoogle Scholar
  17. (b).
    K. Wüthrich and R. Baumann, Helv. Chim. Acta 57, 336–350 (1974).CrossRefGoogle Scholar
  18. 11.(a)
    J. C. Chang, T. P. Das, and D. Ikenberry, Theoret. Chim. Acta (Berlin) 35, 361–368 (1974).CrossRefGoogle Scholar
  19. (b).
    P. S. Han, T. P. Das, and M. F. Rettig, Theoret. Chim. Acta (Berlin) 16, 1–21 (1970).CrossRefGoogle Scholar
  20. 12.
    G. C. Bracket, P. L. Richards, and W. S. Caughey, J. Chem. Phys. 54, 4383–4401 (1971).CrossRefGoogle Scholar
  21. 13.
    J. S. Griffith, The Theory of Transition Metal Ions, Cambridge University Press, Cambridge (1971).Google Scholar
  22. (a).
    Chapter 12, Section 12.4.12 and 12.4.5.Google Scholar
  23. (b).
    Chapter 12, Section 12.4.10.Google Scholar
  24. 14.(a)
    C. Mailer and C. P. S. Taylor, Can. J. Biochem. 50, 1048–1055 (1972).CrossRefGoogle Scholar
  25. (b).
    H. Hori, Biochim. Biophys. Acta 251, 227–235 (1971).Google Scholar
  26. 15.(a)
    A. Abragam and B. Bleaney, Electron Paramagnetic Resonance of Transition Metal Ions, Clarendon Press, Oxford (1970).Google Scholar
  27. (a).
    Chapter 3.(b) Chapter 4.(c) Section 1.12.(d) Section 2.8.(e) Section 4.6.Google Scholar
  28. 16.
    J. Owen and J. H. M. Thornley, Rept. Progr. Phys. 29, 675–728 (1966).CrossRefGoogle Scholar
  29. 17.
    D. R. Hartree and W. Hartree, Proc. Roy. Soc. (London) A193, 299–304 (1948).Google Scholar
  30. 18.
    R. Orbach, Proc. Roy. Soc. (London) A264, 458–495 (1961).Google Scholar
  31. 19.
    C. P. Scholes, R. A. Isaacson, and G. Feher, Biochim. Biophys. Acta 244, 206–210 (1971).CrossRefGoogle Scholar
  32. 20.
    H. Uenoyama, T. Iizuka, H. Morimoto, and M. Kotani, Biochim. Biophys. Acta 160, 159–166 (1968).Google Scholar
  33. 21.
    C. Mailer and C. P. S. Taylor, Biochim. Biophys. Acta 322, 195–203 (1973).Google Scholar
  34. 22.
    K. Wüthrich, Struct. Bonding 8 (in particular pp. 86–89) (1970).Google Scholar
  35. 23.
    G. Feher and E. A. Gere, Phys. Rev. 114, 1245–1256 (1959).CrossRefGoogle Scholar
  36. 24.
    G. Feher and R. A. Isaacson, J. Mag. Res. 7, 111–114 (1972).Google Scholar
  37. 25.
    G. Feher, Bell System Tech. J. 36, 449–484 (1957).Google Scholar
  38. 26.
    J. P. Gordon, Rev. Sci. Instr. 32, 658–661 (1961).CrossRefGoogle Scholar
  39. 27.
    R. A. Isaacson, Rev. Sci. Instr. 47, 973–974 (1976).CrossRefGoogle Scholar
  40. 28.
    H. L. Van Camp, C. P. Scholes, and R. A. Isaacson, Rev. Sci. Instr. 47, 516–517 (1976).CrossRefGoogle Scholar
  41. 29.
    G. Feher, Electron Paramagnetic Resonance with Applications to Selected Problems in Biology, Chap. 2, Gordon and Breach Science Publishers, New York (1970).Google Scholar
  42. 30.
    P. Eisenberger and P. S. Pershan, J. Chem. Phys. 47, 3327–3333 (1967).CrossRefGoogle Scholar
  43. 31.(a)
    J. S. Hyde and G. H. Rist, “endor of Proteins,” presented at the Third International Conference on Magnetic Resonance in Biological Systems, Airlie House, Warrenton, Virginia (1968).Google Scholar
  44. (b).
    J. S. Hyde, in Ann. Rev. Phys. Chem. 25, 407–435 (see in particular p. 418) (1974).CrossRefGoogle Scholar
  45. 32.
    C. P. Scholes, R. A. Isaacson, and G. Feher, Biochim. Biophys. Acta 263, 448–452 (1972).Google Scholar
  46. 33.(a)
    J. S. Hyde, in Magnetic Resonance in Biological Systems (A. Ehrenberg, G. B. Malmström, and T. Vänngard, eds.), pp. 63–85, Wenner-Gren Symposium Series, Pergamon Press, Oxford (1967).Google Scholar
  47. (b).
    G. H. Rist and J. S. Hyde, J. Chem. Phys. 52, 4633–4643 (1970).CrossRefGoogle Scholar
  48. 34.
    S. K. Mun, J. C. Chang, and T. P. Das, Bull. Amer. Phys. Soc. Ser. 2, 21, 317 (1976).Google Scholar
  49. 35.
    J. Koo and Y. N. Hsieh, Chem. Phys. Lett. 9, 238–241 (1971).CrossRefGoogle Scholar
  50. 36.
    M. R. Pattison, Ph.D. Thesis, Wayne State University, Detroit, Michigan (1974).Google Scholar
  51. 37.
    P. Heller, Amer. J. Med. 41, 799–814 (1966).CrossRefGoogle Scholar
  52. 38.
    J. Greer, J. Molec. Biol 59, 107–126 (1971).CrossRefGoogle Scholar
  53. 39.
    M. F. Perutz, P. D. Pulsinelli, and H. M. Ranney, Nature New Biol. 237, 259–263 (1972).CrossRefGoogle Scholar
  54. 40.
    T. R. Lindstrom, C. Ho, and A. V. Pisciotta, Nature New Biol. 237, 263–264 (1972).Google Scholar
  55. 41.a)
    (a)_R. J. Kurland, R. G. Little, D. G. Davis, and C. Ho, Biochemistry 10, 2237–2246 (1971).CrossRefGoogle Scholar
  56. (b).
    F. A. Walker and G. N. La Mar, Ann. N.Y. Acad. Sci. 206, 328–348 (1973).CrossRefGoogle Scholar
  57. 42.
    C. P. Scholes, R. A. Isaacson, T. Yonetani, and G. Feher, Biochim. Biophys. Acta 322, 457–462 (1973).Google Scholar
  58. 43.(a)
    G. Lang, Quart. Rev. Biophys. 3, 1–60 (1970).CrossRefGoogle Scholar
  59. (b).
    M. R. C. Winter, C. E. Johnson, G. Lang, and R. J. P. Williams, Biochim. Biophys. Acta 263, 515–534 (1972).Google Scholar
  60. 44.
    A. Lapidot, private communication.Google Scholar
  61. 45.(a)
    D. F. Koenig, Acta Cryst. 18, 663–673 (1965).CrossRefGoogle Scholar
  62. (b).
    J. L. Hoard, M. J. Hamor, T. A. Hamor, and W. S. Caughey, J. Amer. Chem. Soc. 87, 2312–2319 (1965).CrossRefGoogle Scholar
  63. 46.
    T. H. Moss, A. J. Bearden, and W. S. Caughey, J. Chem. Phys. 51, 2624–2631 (1969).CrossRefGoogle Scholar
  64. 47.
    W. S. Caughey and L. F. Johnson, J. Chem. Soc. D 1969, 1362–1363 (1969).CrossRefGoogle Scholar
  65. 48.
    W. S. Caughey, H. Eberspaecher, W. H. Fuchsman, S. McCoy, and J. O. Alben, Ann. N.Y. Acad. Sci. 153, 722–737 (1968).CrossRefGoogle Scholar
  66. 49.
    G. N. La Mar, J. Amer. Chem. Soc. 95, 1662–1663 (1973).CrossRefGoogle Scholar
  67. 50.
    H. L. Van Camp, C. P. Scholes, and C. F. Mulks, J. Amer. Chem. Soc. 98, 4094–4098 (1976).CrossRefGoogle Scholar
  68. 51.
    C. P. Scholes and H. L. Van Camp, Biochim. Biophys. Acta 434, 290–296 (1976).Google Scholar
  69. 52.(a)
    J. Peisach and W. B. Mims, Proc. Natl. Acad. Sci. U.S. 70, 2979–2982 (1973).CrossRefGoogle Scholar
  70. (b).
    W. B. Mims and J. Peisach, Biochemistry 13, 3346–3349 (1974).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1979

Authors and Affiliations

  • Charles P. Scholes
    • 1
  1. 1.Department of PhysicsState University of New York at AlbanyAlbanyUSA

Personalised recommendations