Skip to main content

Disordered Matrices

  • Chapter

Abstract

Endor in disordered matrices—polycrystalline, glassy, and amorphous media—is a rapidly developing area because it has been recognized that considerable information can be obtained. For many systems of chemical, technological, and biochemical interest, single crystals do not exist or are not readily obtainable. Thus, it is particularly important to develop methods of investigating paramagnetic species in disordered systems. Extraction of geometric and electronic structural information from esr spectra in disordered solids is generally difficult, and double resonance methods like endor and eldor can often be of considerable aid. Indeed, in some cases, the interpretation of the double resonance spectra is much easier. In this chapter, we wish to demonstrate the types of information obtainable by electron magnetic double resonance methods applied to radicals in disordered solids.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Decaillot and J. Uebersfeld, C. R. Acad. Sci. Paris 265, B155 (1967).

    Google Scholar 

  2. J. S. Hyde, G. H. Rist, and L. E. G. Eriksson, J. Phys. Chem. 72, 4269 (1968).

    Article  CAS  Google Scholar 

  3. L. Kevan and L. D. Kispert, Electron Spin Double Resonance Spectroscopy. Chapter 1, Wiley Interscience, New York (1976).

    Google Scholar 

  4. R. D. Allendoerfer, Chem. Phys. Lett. 17, 172 (1972).

    Article  CAS  Google Scholar 

  5. G. H. Rist and J. S. Hyde, J. Chem. Phys. 52, 4633 (1970).

    Article  CAS  Google Scholar 

  6. L. R. Dalton and A. L. Kwiram, J. Chem. Phys. 57, 1132 (1972).

    Article  CAS  Google Scholar 

  7. D. Becker and A. L. Kwiram, Chem. Phys. Lett. 39, 180 (1976).

    Article  CAS  Google Scholar 

  8. L. Kevan and L. D. Kispert, Electron Spin Double Resonance Spectroscopy, Chapter 7, Wiley-Interscience, New York (1976).

    Google Scholar 

  9. J. N. Helbert, B. E. Wagner, E. H. Poindexter, and L. Kevan, J. Polym. Sci. (Phys.) 13, 825 (1975).

    Article  CAS  Google Scholar 

  10. R. N. Schwartz, M. K. Bowman, and L. Kevan, unpublished work.

    Google Scholar 

  11. D. S. Leniart, J. S. Hyde, and J. C. Vedrine, J. Phys. Chem. 76, 2079 (1972).

    Article  CAS  Google Scholar 

  12. J. C. Vedrine, J. S. Hyde, and D. S. Leniart, J. Phys. Chem. 76, 2087 (1972).

    Article  CAS  Google Scholar 

  13. J. Helbert, L. Kevan, and B. L. Bales, J. Chem. Phys. 57, 723 (1972).

    Article  CAS  Google Scholar 

  14. J. Helbert and L. Kevan, J. Chem. Phys. 58, 1205 (1973).

    Article  CAS  Google Scholar 

  15. B. L. Bales, R. N. Schwartz, and L. Kevan, Chem. Phys. Lett. 22, 13 (1973).

    Article  CAS  Google Scholar 

  16. R. N. Schwartz, M. K. Bowman, and L. Kevan, J. Chem. Phys. 60, 1690 (1974).

    Article  CAS  Google Scholar 

  17. B. L. Bales, R. N. Schwartz, and L. Kevan, Ber. Bunsenges Phys. Chem. 78, 194 (1974).

    CAS  Google Scholar 

  18. H. Hase, F. Q. H. Ngo, and L. Kevan, J. Chem. Phys. 62, 985 (1975).

    Article  CAS  Google Scholar 

  19. D. P. Lin and L. Kevan, Chem. Phys. Lett. 40, 517 (1976).

    Article  CAS  Google Scholar 

  20. F. Q. H. Ngo, S. Noda, and L. Kevan, in Proc. of 4th International Symposium on Radiation Chemistry, Kesthely, Hungary, 1976 (P. Heddig and P. Schiller, eds.), pp. 951–962, Akademiai Kaido, Budapest, Hungary (1977).

    Google Scholar 

  21. E. G. Derouane and J. C. Vedrine, Chem. Phys. Lett. 29, 222 (1974).

    Article  CAS  Google Scholar 

  22. J. C. Vedrine, D. S. Leniart, and J. S. Hyde, Ind. Chim. Belg. 38, 397 (1973).

    CAS  Google Scholar 

  23. V. L. Hochmann, V. Ya. Zevin, and B. D. Shanina, Fiz. Tver. Tela 10, 337 (1968) English trans.: Sov. Phys. Solid State 10, 269 (1968).

    Google Scholar 

  24. P. A. Narayana, R. N. Schwartz, M. Bowman, D. Becker, and L. Kevan, J. Chem. Phys. 67, 1990 (1977).

    Article  CAS  Google Scholar 

  25. W. Low, in Solid State Physics (F. Seitz and D. Turnbull, eds.), Suppl. 2, p. 52, Academic Press, New York (1960).

    Google Scholar 

  26. L. G. Rowan, E. L. Hahn, and W. B. Mims, Phys. Rev. 1374, 61 (1965).

    Article  Google Scholar 

  27. H. Seidel, Z. Phys. 165, 239 (1961).

    Article  CAS  Google Scholar 

  28. R. D. Allendoerfer and A. H. Maki, J. Mag. Res. 3, 396 (1970).

    CAS  Google Scholar 

  29. A. G. Redfield, Phys. Rev. 98, 1787 (1955).

    Article  CAS  Google Scholar 

  30. L. Kevan, M. K. Bowman, P. A. Narayana, R. K. Boeckman, V. F. Yudanov, and Yu. D. Tsvetkov, J. Chem. Phys. 63, 409 (1975).

    Article  CAS  Google Scholar 

  31. M. Iwasaki, H. Muto, B. Eda, and K. Nunome, J. Chem. Phys. 56, 3166 (1972).

    Article  CAS  Google Scholar 

  32. M. Bowman, Ph.D. Thesis, Wayne State University (1975).

    Google Scholar 

  33. W. B. Mims, in Electron Paramagnetic Resonance (S. Geschwind, ed.), p. 263, Plenum Press, New York (1972).

    Google Scholar 

  34. H. Yoshida, D. F. Feng, and L. Kevan, J. Chem. Phys. 58, 3411 (1973).

    Article  CAS  Google Scholar 

  35. H. Yoshida, D. F. Feng, and L. Kevan, J. Chem. Phys. 58, 4924 (1973).

    Article  CAS  Google Scholar 

  36. J. S. Hyde, M. D. Smigel, L. R. Dalton, and L. A. Dalton, J. Chem. Phys. 62, 1655 (1975).

    Article  CAS  Google Scholar 

  37. M. M. Dorio and J. C. W. Chien, J. Magnet. Resonance 21, 491 (1976).

    CAS  Google Scholar 

  38. J. S. Hyde, R. C. Sneed, and G. H. Rist, J. Chem. Phys. 51, 1404 (1969).

    Article  CAS  Google Scholar 

  39. A. M. Portis, Phys. Rev. 91, 1071 (1953).

    Article  CAS  Google Scholar 

  40. L. Kevan, D. F. Feng, and F. Ngo, unpublished work.

    Google Scholar 

  41. P. R. Moran, Phys. Rev. 135, 247 (1964).

    Article  CAS  Google Scholar 

  42. M. Bowman, L. Kevan, R. N. Schwartz, and B. L. Bales, Chem. Phys. Lett. 22, 19 (1973).

    Article  CAS  Google Scholar 

  43. P. A. Narayana, M. K. Bowman, L. Kevan, V. F. Yudanov, and Yu. D. Tsvetkov, J. Chem. Phys. 63, 3365 (1975).

    Article  CAS  Google Scholar 

  44. M. Bowman, L. Kevan, and R. N. Schwartz, Chem. Phys. Lett. 30, 208 (1975).

    Article  CAS  Google Scholar 

  45. N. Bloembergen, S. Shapiro, P. S. Pershan, and J. O. Artman, Phys. Rev. 114, 445 (1959).

    Article  CAS  Google Scholar 

  46. D. P. Lin, D. F. Feng, F. Q. H. Ngo, and L. Kevan, J. Chem. Phys. 65, 3994 (1976).

    Article  CAS  Google Scholar 

  47. A. Kiel, Phys. Rev. 120, 137 (1960).

    Article  Google Scholar 

  48. M. Goldman, Spin Temperature and Nuclear Magnetic Resonance in Solids, p. 226, Clarendon Press, Oxford (1970).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1979 Plenum Press, New York

About this chapter

Cite this chapter

Kevan, L., Narayana, P.A. (1979). Disordered Matrices. In: Dorio, M.M., Freed, J.H. (eds) Multiple Electron Resonance Spectroscopy. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-3441-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-3441-5_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-3443-9

  • Online ISBN: 978-1-4684-3441-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics