Advertisement

Disordered Matrices

  • Larry Kevan
  • P. A. Narayana

Abstract

Endor in disordered matrices—polycrystalline, glassy, and amorphous media—is a rapidly developing area because it has been recognized that considerable information can be obtained. For many systems of chemical, technological, and biochemical interest, single crystals do not exist or are not readily obtainable. Thus, it is particularly important to develop methods of investigating paramagnetic species in disordered systems. Extraction of geometric and electronic structural information from esr spectra in disordered solids is generally difficult, and double resonance methods like endor and eldor can often be of considerable aid. Indeed, in some cases, the interpretation of the double resonance spectra is much easier. In this chapter, we wish to demonstrate the types of information obtainable by electron magnetic double resonance methods applied to radicals in disordered solids.

Keywords

Trap Electron Hyperfine Coupling Spin Diffusion ENDOR Spectrum ENDOR Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Decaillot and J. Uebersfeld, C. R. Acad. Sci. Paris 265, B155 (1967).Google Scholar
  2. 2.
    J. S. Hyde, G. H. Rist, and L. E. G. Eriksson, J. Phys. Chem. 72, 4269 (1968).CrossRefGoogle Scholar
  3. 3.
    L. Kevan and L. D. Kispert, Electron Spin Double Resonance Spectroscopy. Chapter 1, Wiley Interscience, New York (1976).Google Scholar
  4. 4.
    R. D. Allendoerfer, Chem. Phys. Lett. 17, 172 (1972).CrossRefGoogle Scholar
  5. 5.
    G. H. Rist and J. S. Hyde, J. Chem. Phys. 52, 4633 (1970).CrossRefGoogle Scholar
  6. 6.
    L. R. Dalton and A. L. Kwiram, J. Chem. Phys. 57, 1132 (1972).CrossRefGoogle Scholar
  7. 7.
    D. Becker and A. L. Kwiram, Chem. Phys. Lett. 39, 180 (1976).CrossRefGoogle Scholar
  8. 8.
    L. Kevan and L. D. Kispert, Electron Spin Double Resonance Spectroscopy, Chapter 7, Wiley-Interscience, New York (1976).Google Scholar
  9. 9.
    J. N. Helbert, B. E. Wagner, E. H. Poindexter, and L. Kevan, J. Polym. Sci. (Phys.) 13, 825 (1975).CrossRefGoogle Scholar
  10. 10.
    R. N. Schwartz, M. K. Bowman, and L. Kevan, unpublished work.Google Scholar
  11. 11.
    D. S. Leniart, J. S. Hyde, and J. C. Vedrine, J. Phys. Chem. 76, 2079 (1972).CrossRefGoogle Scholar
  12. 12.
    J. C. Vedrine, J. S. Hyde, and D. S. Leniart, J. Phys. Chem. 76, 2087 (1972).CrossRefGoogle Scholar
  13. 13.
    J. Helbert, L. Kevan, and B. L. Bales, J. Chem. Phys. 57, 723 (1972).CrossRefGoogle Scholar
  14. 14.
    J. Helbert and L. Kevan, J. Chem. Phys. 58, 1205 (1973).CrossRefGoogle Scholar
  15. 15.
    B. L. Bales, R. N. Schwartz, and L. Kevan, Chem. Phys. Lett. 22, 13 (1973).CrossRefGoogle Scholar
  16. 16.
    R. N. Schwartz, M. K. Bowman, and L. Kevan, J. Chem. Phys. 60, 1690 (1974).CrossRefGoogle Scholar
  17. 17.
    B. L. Bales, R. N. Schwartz, and L. Kevan, Ber. Bunsenges Phys. Chem. 78, 194 (1974).Google Scholar
  18. 18.
    H. Hase, F. Q. H. Ngo, and L. Kevan, J. Chem. Phys. 62, 985 (1975).CrossRefGoogle Scholar
  19. 19.
    D. P. Lin and L. Kevan, Chem. Phys. Lett. 40, 517 (1976).CrossRefGoogle Scholar
  20. 20.
    F. Q. H. Ngo, S. Noda, and L. Kevan, in Proc. of 4th International Symposium on Radiation Chemistry, Kesthely, Hungary, 1976 (P. Heddig and P. Schiller, eds.), pp. 951–962, Akademiai Kaido, Budapest, Hungary (1977).Google Scholar
  21. 21.
    E. G. Derouane and J. C. Vedrine, Chem. Phys. Lett. 29, 222 (1974).CrossRefGoogle Scholar
  22. 22.
    J. C. Vedrine, D. S. Leniart, and J. S. Hyde, Ind. Chim. Belg. 38, 397 (1973).Google Scholar
  23. 23.
    V. L. Hochmann, V. Ya. Zevin, and B. D. Shanina, Fiz. Tver. Tela 10, 337 (1968) English trans.: Sov. Phys. Solid State 10, 269 (1968).Google Scholar
  24. 24.
    P. A. Narayana, R. N. Schwartz, M. Bowman, D. Becker, and L. Kevan, J. Chem. Phys. 67, 1990 (1977).CrossRefGoogle Scholar
  25. 25.
    W. Low, in Solid State Physics (F. Seitz and D. Turnbull, eds.), Suppl. 2, p. 52, Academic Press, New York (1960).Google Scholar
  26. 26.
    L. G. Rowan, E. L. Hahn, and W. B. Mims, Phys. Rev. 1374, 61 (1965).CrossRefGoogle Scholar
  27. 27.
    H. Seidel, Z. Phys. 165, 239 (1961).CrossRefGoogle Scholar
  28. 28.
    R. D. Allendoerfer and A. H. Maki, J. Mag. Res. 3, 396 (1970).Google Scholar
  29. 29.
    A. G. Redfield, Phys. Rev. 98, 1787 (1955).CrossRefGoogle Scholar
  30. 30.
    L. Kevan, M. K. Bowman, P. A. Narayana, R. K. Boeckman, V. F. Yudanov, and Yu. D. Tsvetkov, J. Chem. Phys. 63, 409 (1975).CrossRefGoogle Scholar
  31. 31.
    M. Iwasaki, H. Muto, B. Eda, and K. Nunome, J. Chem. Phys. 56, 3166 (1972).CrossRefGoogle Scholar
  32. 32.
    M. Bowman, Ph.D. Thesis, Wayne State University (1975).Google Scholar
  33. 33.
    W. B. Mims, in Electron Paramagnetic Resonance (S. Geschwind, ed.), p. 263, Plenum Press, New York (1972).Google Scholar
  34. 34.
    H. Yoshida, D. F. Feng, and L. Kevan, J. Chem. Phys. 58, 3411 (1973).CrossRefGoogle Scholar
  35. 35.
    H. Yoshida, D. F. Feng, and L. Kevan, J. Chem. Phys. 58, 4924 (1973).CrossRefGoogle Scholar
  36. 36.
    J. S. Hyde, M. D. Smigel, L. R. Dalton, and L. A. Dalton, J. Chem. Phys. 62, 1655 (1975).CrossRefGoogle Scholar
  37. 37.
    M. M. Dorio and J. C. W. Chien, J. Magnet. Resonance 21, 491 (1976).Google Scholar
  38. 38.
    J. S. Hyde, R. C. Sneed, and G. H. Rist, J. Chem. Phys. 51, 1404 (1969).CrossRefGoogle Scholar
  39. 39.
    A. M. Portis, Phys. Rev. 91, 1071 (1953).CrossRefGoogle Scholar
  40. 40.
    L. Kevan, D. F. Feng, and F. Ngo, unpublished work.Google Scholar
  41. 41.
    P. R. Moran, Phys. Rev. 135, 247 (1964).CrossRefGoogle Scholar
  42. 42.
    M. Bowman, L. Kevan, R. N. Schwartz, and B. L. Bales, Chem. Phys. Lett. 22, 19 (1973).CrossRefGoogle Scholar
  43. 43.
    P. A. Narayana, M. K. Bowman, L. Kevan, V. F. Yudanov, and Yu. D. Tsvetkov, J. Chem. Phys. 63, 3365 (1975).CrossRefGoogle Scholar
  44. 44.
    M. Bowman, L. Kevan, and R. N. Schwartz, Chem. Phys. Lett. 30, 208 (1975).CrossRefGoogle Scholar
  45. 45.
    N. Bloembergen, S. Shapiro, P. S. Pershan, and J. O. Artman, Phys. Rev. 114, 445 (1959).CrossRefGoogle Scholar
  46. 46.
    D. P. Lin, D. F. Feng, F. Q. H. Ngo, and L. Kevan, J. Chem. Phys. 65, 3994 (1976).CrossRefGoogle Scholar
  47. 47.
    A. Kiel, Phys. Rev. 120, 137 (1960).CrossRefGoogle Scholar
  48. 48.
    M. Goldman, Spin Temperature and Nuclear Magnetic Resonance in Solids, p. 226, Clarendon Press, Oxford (1970).Google Scholar

Copyright information

© Plenum Press, New York 1979

Authors and Affiliations

  • Larry Kevan
    • 1
  • P. A. Narayana
    • 1
  1. 1.Department of ChemistryWayne State UniversityDetroitUSA

Personalised recommendations