Advertisement

Modulation Effects in Multiple Electron Resonance Spectroscopy

  • Lauraine A. Dalton
  • Larry R. Dalton

Abstract

In the broadest sense, modulation effects can be considered to represent those perturbations or influences on spectroscopic line shapes that arise either (1) from applied coherent (frequency, amplitude, or phase) modulation of the electromagnetic radiation incident upon the sample or modulation of the energy levels (resonance condition) as found, for example, with Stark modulation in microwave spectroscopy(1–6) or Zeeman modulation in magnetic resonance(7–19) or (2) from modulation of the populations of energy levels or of the phase coherence of precessing electric or magnetic dipoles arising from stochastic lattice fluctuations.(19–28) Thus, modulation effects can be classified as either applied and coherent or as molecular and stochastic. Earlier in this volume, Freed has discussed the effects of stochastic lattice fluctuations upon electron and nuclear spin relaxation rates and hence upon magnetic resonance and multiple magnetic resonance line shapes. While we shall explicitly consider both types of modulation effects, we shall do so from the standpoint of examining the importance of applied coherent modulation in determining magnetic resonance and multiple resonance responses. There are three aspects to the utilization of coherent modulation and accompanying phase-sensitive detection

Keywords

Modulation Effect Spin Label Incident Pump Power Rotational Correlation Time Incident Microwave Power 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. E. Good, Phys. Rev. 70, 213–218 (1946).CrossRefGoogle Scholar
  2. 2.
    C. H. Townes, Phys. Rev. 70, 665–671 (1946).CrossRefGoogle Scholar
  3. 3.
    R. H. Hughes and E. B. Wilson, Jr., Phys. Rev. 71, 562–563 (1947).CrossRefGoogle Scholar
  4. 4.
    B. P. Dailey, Phys. Rev. 72, 84–85 (1947).CrossRefGoogle Scholar
  5. 5.
    R. J. Watts and D. Williams, Phys. Rev. 72, 1122–1123 (1947).CrossRefGoogle Scholar
  6. 6.
    R. Karplus, Phys. Rev. 73, 1027–1034 (1948).CrossRefGoogle Scholar
  7. 7.
    N. Bloembergen, E. M. Purcell, and R. V. Pound, Phys. Rev. 73, 679–712 (1948).CrossRefGoogle Scholar
  8. 8.
    F. Bloch, W. W. Hansen, and M. Packard, Phys. Rev. 70, 474–485 (1946).CrossRefGoogle Scholar
  9. 9.
    B. Smaller, Phys. Rev. 83, 812–820 (1951).CrossRefGoogle Scholar
  10. 10.
    J. H. Arnold and M. E. Packard, J. Chem. Phys. 19, 1608–1609 (1951).CrossRefGoogle Scholar
  11. 11.
    M. M. Perlman and M. Bloom, Phys. Rev. 88, 1290–1291 (1952).CrossRefGoogle Scholar
  12. 12.
    E. R. Andrew, Phys. Rev. 91, 425 (1953).CrossRefGoogle Scholar
  13. 13.
    B. Smaller and E. L. Yasaitis, Rev. Sci. lnstr. 24, 991–992 (1953).CrossRefGoogle Scholar
  14. 14.
    K. Halbach, Helv. Phys. Acta 27, 259–282 (1954).Google Scholar
  15. K. Halbach, Phys. Rev. 119, 1230–1233 (1960).CrossRefGoogle Scholar
  16. 15.
    P. S. Hubbard, Jr., and T. J. Rowland, J. Appl. Phys. 28, 1275–1281 (1957).CrossRefGoogle Scholar
  17. 16.
    G. B. Benedek and T. Kushida, Phys. Rev. 118, 46–57 (1959).CrossRefGoogle Scholar
  18. 17.
    J. D. Macomber and J. S. Waugh, Phys. Rev. A140, 1494–1497 (1965).CrossRefGoogle Scholar
  19. 18.
    C. P. Poole, Jr., Electron Spin Resonance, Wiley-Interscience, New York (1967).Google Scholar
  20. 19.
    A. Abragam, The Principles of Nuclear Magnetism, Oxford University Press, London (1961).Google Scholar
  21. 20.
    G. E. Pake, Paramagnetic Resonance, W. A. Benjamin, New York (1962).Google Scholar
  22. 21.
    C. P. Slichter, Principles of Magnetic Resonance, Harper and Row, New York (1963).Google Scholar
  23. 22.
    I. V. Aleksandrov, The Theory of Nuclear Magnetic Resonance, Academic Press, New York (1966).Google Scholar
  24. 23.
    A. Carrington and A. D. McLachlan, Introduction to Magnetic Resonance, Harper and Row, New York (1967).Google Scholar
  25. 24.
    L. T. Muus and P. W. Atkins (eds.), Electron Spin Relaxation in Liquids, Plenum Press, New York (1972).Google Scholar
  26. 25.
    K. E. Shuler (ed.), Stochastic Processes in Chemical Physics, Wiley Interscience, New York (1969).Google Scholar
  27. 26.
    N. M. Atherton, Electron Spin Resonance, Halsted Press, London (1973).Google Scholar
  28. 27.
    L. J. Berliner (ed.), Spin Labeling: Theory and Applications, Academic Press, New York (1976).Google Scholar
  29. 28.
    J. H. Freed, Ann. Rev. Phys. Chem. 23, 265–310 (1972).CrossRefGoogle Scholar
  30. 29.
    K. J. Standley and R. A. Vaughan, Electron Spin Relaxation Phenomena in Solids, Plenum Press, New York (1969).Google Scholar
  31. 30.
    A. A. Manenkov and R. Orbach (eds.), Spin-Lattice Relaxation in Ionic Solids, Harper and Row, New York (1966).Google Scholar
  32. 31.
    L. R. Dalton, Saturation Transfer Spectroscopy, Wiley-Interscience, New York (to be published).Google Scholar
  33. 32.
    H. H. Günthard, Ber. Bunsen-Ges. 78, 1110–1115 (1974).Google Scholar
  34. 33.
    L. R. Dalton, B. H. Robinson, L. A. Dalton, and P. Coflfey, in Advances in Magnetic Resonance (J. S. Waugh, ed.), Vol. 8, pp. 149–259, Academic Press, New York (1976).Google Scholar
  35. 34.
    D. D. Thomas, L. R. Dalton, and J. S. Hyde, J. Chem. Phys. 65, 3006–3024 (1976).CrossRefGoogle Scholar
  36. 35.
    C. L. Hamilton and H. M. McConnell, in Structural Chemistry and Molecular Biology (A. Rich and N. Davidson, eds.), pp. 115–149, W. H. Freeman, San Francisco (1968).Google Scholar
  37. 36.
    H. M. McConnell and B. G. McFarland, Quart. Rev. Biophys. 3, 91–136 (1970).CrossRefGoogle Scholar
  38. 37.
    P. C. Jost and O. H. Griffith, in Methods in Pharmacology: Vol. II. Physical Methods (C. Chignell, ed.), pp. 223–276, Appleton-Century-Crofts, New York (1972).Google Scholar
  39. 38.
    P. C. Jost, A. S. Waggoner, and O. H. Griffith, in Structure and Function of Biological Membranes (L. I. Rothfield, ed.), pp. 83–144, Academic Press, New York (1971).Google Scholar
  40. 39.
    I. C. P. Smith, in Biological Applications of Electron Spin Resonance Spectroscopy (H. M. Swartz, J. R. Bolton, and D. C. Borg, eds.), pp. 483–539, Wiley-Interscience, New York (1972).Google Scholar
  41. 40.
    F. S. Axel, Biophys. Struct. Mechanism 2, 181–218 (1976).CrossRefGoogle Scholar
  42. 41.
    G. I. Likhtenstein, Spin Labeling Methods in Molecular Biology, Wiley-Interscience, New York (1976).Google Scholar
  43. 42.
    J. S. Hyde, in Methods in Enzymology. Enzyme Structure. Part F (C. H. W. Hirs and S. N. Timasheff, eds.), Vol. 49G, No. 19, pp. 480–511, Academic Press, New York (1978).Google Scholar
  44. 43.
    J. S. Hyde, M. D. Smigel, L. R. Dalton, and L. A. Dalton, J. Chem. Phys. 62, 1655–1667 (1975).CrossRefGoogle Scholar
  45. 44.
    M. D. Smigel, L. R. Dalton, J. S. Hyde, and L. A. Dalton, Proc. Nat. Acad. Sci. USA 71, 1925–1929 (1974).CrossRefGoogle Scholar
  46. 45.
    M. M. Dorio and J. C. W. Chien, Macromolecules 8, 734–739 (1975).CrossRefGoogle Scholar
  47. 46.
    M. M. Dorio and J. C. W. Chien, J. Mag. Res. 20, 114–123 (1975).Google Scholar
  48. 47.
    M. M. Dorio, Ph.D. Thesis, University of Massachusetts, Amherst (1975).Google Scholar
  49. 48.
    B. H. Robinson, J.-L. Monge, L. A. Dalton, and L. R. Dalton, Chem. Phys. Lett. 28, 169–175 (1974).CrossRefGoogle Scholar
  50. 49.
    L. A. Dalton, J.-L. Monge, L. R. Dalton, and A. L. Kwiram, Chem. Phys. 6, 166–182 (1974).CrossRefGoogle Scholar
  51. 50.
    M. M. Dorio and J. C. W. Chien, J. Chem. Phys. 62, 3963–3967 (1975).CrossRefGoogle Scholar
  52. 51.
    C. Mottley, K. Chang and L. D. Kispert, J. Mag. Res. 19, 130–143 (1975).Google Scholar
  53. 52.
    P. W. Percival, J. S. Hyde, L. A. Dalton, and L. R. Dalton, J. Chem. Phys. 62, 4332–4342 (1975).CrossRefGoogle Scholar
  54. 53.
    M. M. Zarinov, V. P. Meiklyar, and M. L. Falin, Fiz. Tverd. Tela 17, 3438–3440 (1975) [English transi.: Sov. Phys. Solid State 17, 2251-2252 (1976)].Google Scholar
  55. 54.
    J. S. Hyde and L. R. Dalton, in Spin Labeling II: Theory and Applications (L. J. Berliner, ed.), pp. 1–70, Academic Press, New York (1979).Google Scholar
  56. 55.
    D. D. Thomas, in Trends in Biochemical Science, Vol. 2, Elsevier, Amsterdam (1977).Google Scholar
  57. 56.
    J. S. Hyde, J. Chem. Phys. 43, 1806–1818 (1965).CrossRefGoogle Scholar
  58. 57.
    B. H. Robinson, Ph.D. Thesis, Vanderbilt University, Nashville, Tennessee (1975).Google Scholar
  59. 58.
    N. B. Galloway, Ph.D. Thesis, Vanderbilt University, Nashville, Tennessee (1977).Google Scholar
  60. 59.
    S. M. Moskow, unpublished results.Google Scholar
  61. 60.
    R. C. Perkins, Jr., Ph.D. Thesis, Vanderbilt University, Nashville, Tennessee (1977).Google Scholar
  62. 61.
    B. H. Robinson and L. R. Dalton, Chem. Phys. 36, 207–237 (1979).CrossRefGoogle Scholar
  63. 62.
    S. A. Goldman, G. V. Bruno, C. F. Polnaszek, and J. H. Freed, J. Chem. Phys. 56, 716–735 (1972).CrossRefGoogle Scholar
  64. 63.
    P. A. Egelstaff, J. Chem. Phys. 53, 2590–2598 (1970).CrossRefGoogle Scholar
  65. 64.
    E. N. Ivanov, Zhur. Eksp. Teor. Fiz. 45, 1509–1517 (1963) [English translation: Sov. Phys. JETP 18, 1041-1045 (1964)].Google Scholar
  66. 65.
    J. H. Freed, in Spin Labeling: Theory and Applications (L. J. Berliner, ed.), pp. 53–132, Academic Press, New York (1976).Google Scholar
  67. 66.
    P. Coffey, B. H. Robinson, and L. R. Dalton, Chem. Phys. Lett. 35, 360–366 (1975).CrossRefGoogle Scholar
  68. 67.
    P. W. Percival and J. S. Hyde, J. Mag. Res. 23, 249–257 (1976).Google Scholar
  69. 68.
    J. H. Freed, in Electron Spin Relaxation in Liquids (L. T. Muus and P. W. Atkins, eds.), pp. 387–409, Plenum Press, New York (1972).CrossRefGoogle Scholar
  70. 69.
    J. H. Freed, G. V. Bruno, and C. F. Polnaszek, J. Phys. Chem. 75, 3385–3399 (1971).CrossRefGoogle Scholar
  71. 70.
    S. A. Goldman, G. V. Bruno, and J. H. Freed, J. Phys. Chem. 76, 1858–1860 (1972).CrossRefGoogle Scholar
  72. 71.
    C. F. Polnaszek, G. V. Bruno, and J. H. Freed, J. Chem. Phys. 58, 3185–3199 (1973).CrossRefGoogle Scholar
  73. 72.
    S. A. Goldman, G. V. Bruno, and J. H. Freed, J. Chem. Phys. 59, 3071–3091 (1973).CrossRefGoogle Scholar
  74. 73.
    G. V. Bruno and J. H. Freed, Chem. Phys. Lett. 25, 328–332 (1974).Google Scholar
  75. 74.
    G. V. Bruno and J. H. Freed, J. Phys. Chem. 78, 935–940 (1974).CrossRefGoogle Scholar
  76. 75.
    R. P. Mason and J. H. Freed, J. Phys. Chem. 78, 1321–1323 (1974).CrossRefGoogle Scholar
  77. 76.
    R. P. Mason, C. F. Polnaszek, and J. H. Freed, J. Phys. Chem. 78, 1324–1329 (1974).CrossRefGoogle Scholar
  78. 77.
    J. S. Hwang, R. P. Mason, L.-P. Hwang, and J. H. Freed, J. Phys. Chem. 79, 489–511 (1975).CrossRefGoogle Scholar
  79. 78.
    C. F. Polnaszek and J. H. Freed, J. Phys. Chem. 79, 2283–2306 (1975).CrossRefGoogle Scholar
  80. 79.
    J. H. Freed, in Electron Spin Relaxation in Liquids (L. T. Muus and P. W. Atkins, eds.), pp. 503–530, and references contained therein, Plenum Press, New York (1972).CrossRefGoogle Scholar
  81. 80.
    J. H. Freed, D. S. Leniart, and H. D. Connor, J. Chem. Phys. 58, 3089–3105 (1973).CrossRefGoogle Scholar
  82. 81.
    B. H. Robinson, L. R. Dalton, L. A. Dalton, and A. L. Kwiram, Chem. Phys. Lett. 29, 56–64 (1974).CrossRefGoogle Scholar
  83. 82.
    L. R. Dalton, P. Coffey, L. A. Dalton, B. H. Robinson, and A. D. Keith, Phys. Rev. A11, 488–498 (1975).Google Scholar
  84. 83.
    P. Coffey, B. H. Robinson, and L. R. Dalton, Molec. Phys. 31, 1703–1715 (1976).CrossRefGoogle Scholar
  85. 84.
    D. D. Thomas and H. M. McConnell, Chem. Phys. Lett. 25, 470–475 (1974).CrossRefGoogle Scholar
  86. 85.
    J. S. Hyde, J. C. W. Chien, and J. H. Freed, J. Chem. Phys. 48, 4211–4226 (1968).CrossRefGoogle Scholar
  87. 86.
    M. P. Eastman, G. V. Bruno, and J. H. Freed, J. Chem. Phys. 52, 321–327 (1970).CrossRefGoogle Scholar
  88. 87.
    E. Van der Drift, A. F. Mehlkopf, and J. Smidt, Chem. Phys. Lett. 36, 385–389 (1975).CrossRefGoogle Scholar
  89. 88.
    R. J. Cook and D. H. Whiffen, Proc. Phys. Soc. London 84, 845–848 (1964).CrossRefGoogle Scholar
  90. 89.
    J. H. Freed, J. Chem. Phys. 50, 2271–2271 (1969).CrossRefGoogle Scholar
  91. 90.
    N. S. Dalai and C. A. McDowell, Chem. Phys. Lett. 6, 617–619 (1970).CrossRefGoogle Scholar
  92. 91.
    J. A. R. Coope, N. S. Dalai, C. A. McDowell, and R. Srinivasan, Molec. Phys. 24, 403–415 (1972).CrossRefGoogle Scholar
  93. 92.
    K. P. Dinse, R. Biehl, and K. Möbius, J. Chem. Phys. 61, 4335–4341 (1974).CrossRefGoogle Scholar
  94. 93.
    R. Biehl, M. Plato, and K. Möbius, J. Chem. Phys. 63, 3515–3522 (1975).CrossRefGoogle Scholar
  95. 94.
    L. R. Dalton and A. L. Kwiram, unpublished results.Google Scholar
  96. 95.
    J. S. Hyde and L. R. Dalton, Chem. Phys. Lett. 16, 568–572 (1972).CrossRefGoogle Scholar
  97. 96.
    J. S. Hyde and L. R. Dalton, in 4th International Biophysics CongressSymposial Papers, pp. 687–702. Pushchino, Moscow (1973).Google Scholar
  98. 97.
    J. S. Hyde and D. D. Thomas, Ann. N.Y. Acad. Sci. 222, 680–692 (1973).CrossRefGoogle Scholar
  99. 98.
    D. D. Thomas, J. C. Seidel, J. S. Hyde, and J. Gergely, Proc. Nat. Acad. Sci. USA 72, 1729–1733 (1975).CrossRefGoogle Scholar
  100. 99.
    D. D. Thomas, J. C. Seidel, J. Gergely, and J. S. Hyde, J. Supramolec. Struct. 3, 376–390 (1975).CrossRefGoogle Scholar
  101. 100.
    C. Mailer and B. M. Hoffman, J. Phys. Chem. 80, 842–846 (1976).CrossRefGoogle Scholar
  102. 101.
    A. M. Portis, Phys. Rev. 100, 1219–1221 (1955).CrossRefGoogle Scholar
  103. 102.
    A. M. Portis, Technical Note No. 1, Sarah Mellon Scaife Radiation Laboratory, University of Pittsburgh, Pittsburgh, Pennsylvania, unpublished.Google Scholar
  104. 103.
    J. S. Hyde, Phys. Rev. 119, 1483–1492 (1960).CrossRefGoogle Scholar
  105. 104.
    M. Weger, Bell System Tech. J. 39, 1013–1112 (1960).Google Scholar
  106. 105.
    G. Feher, Phys. Rev. 114, 1219–1244 (1959).CrossRefGoogle Scholar
  107. 106.
    D. D. Thomas, Ph.D. Thesis, Stanford University, Palo Alto, California (1975); see particularly Appendix A, pp. 92-94.Google Scholar
  108. 107.
    H. M. McConnell, in Spin Labeling: Theory and Applications (L. J. Berliner, ed.), pp. 525–560. Academic Press, New York (1976); see particularly Appendix A.Google Scholar
  109. 108.
    R. Briere, H. Lemaire, A. Rassat, P. Rey, and A. Rousseau, Bull. Soc. Chim. France 12, 4479–4484 (1967).Google Scholar
  110. 109.
    R. W. Kreilick, J. Chem. Phys. 46, 4260–4264 (1967).CrossRefGoogle Scholar
  111. 110.
    C. C. Whisnant, S. Ferguson, and D. B. Chesnut, J. Phys. Chem. 78, 1410–1415 (1974).CrossRefGoogle Scholar
  112. 111.
    R. C. Perkins, Jr., T. Lionel, B. H. Robinson, L. A. Dalton, and L. R. Dalton, Chem. Phys. 16, 393–403 (1976).CrossRefGoogle Scholar
  113. 112.
    T. B. Marriott, S. P. Van, and O. H. Griffith, J. Mag. Res. 24, 41–52 (1976).Google Scholar
  114. 113.
    R. C. Perkins, Jr., L. R. Dalton, and L. D. Kispert, J. Mag. Res. 26, 25–33 (1977).Google Scholar
  115. 114.
    A. B. Wolbarst, Solid State Commun. 18, 1193–1195 (1976).CrossRefGoogle Scholar
  116. 115.
    G. H. Rist and J. S. Hyde, J. Chem. Phys. 49, 2449–2451 (1968).CrossRefGoogle Scholar
  117. 116.
    G. H. Rist and J. S. Hyde, J. Chem. Phys. 52, 4633–4643 (1970).CrossRefGoogle Scholar
  118. 117.
    J. S. Hyde, G. H. Rist, and L. E. Göran Eriksson, J. Phys. Chem. 72, 4269–4276 (1968).CrossRefGoogle Scholar
  119. 118.
    W. H. Walker, J. Salach, M. Gutman, T. P. Singer, J. S. Hyde, and A. Ehrenberg, FEBS Lett. 5, 237–240 (1969).CrossRefGoogle Scholar
  120. 119.
    L. E. Göran Eriksson, J. S. Hyde, and A. Ehrenberg, Biochem. Biophys. Acta 192, 211–230 (1969).CrossRefGoogle Scholar
  121. 120.
    L. E. Göran Eriksson, A. Ehrenberg, and J. S. Hyde, Eur. J. Biochem. 17, 539–543 (1970).CrossRefGoogle Scholar
  122. 121.
    J. S. Hyde, R. C. Sneed, Jr., and G. H. Rist, J. Chem. Phys. 51, 1404–1416 (1969).CrossRefGoogle Scholar
  123. 122.
    D. J. Lowe and J. S. Hyde, Biochim. Biophys. Acta 377, 205–210 (1975).Google Scholar
  124. 123.
    R. D. Allendoerfer, Chem. Phys. Lett. 17, 172–174 (1972).CrossRefGoogle Scholar
  125. 124.
    J. Fritz, R. Anderson, J. Fee, G. Palmer, R. H. Sands, J. C. M. Tsibris, I. C. Gunsalus, W. H. Orme-Johnson, and H. Beinert, Biochim. Biophys. Acta 253, 110–113 (1971).CrossRefGoogle Scholar
  126. 125.
    J. S. Hyde, T. Astlind, L. E. Göran Eriksson, and A. Ehrenberg, Rev. Sci. Instr. 41, 1598–1600 (1970).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1979

Authors and Affiliations

  • Lauraine A. Dalton
    • 1
  • Larry R. Dalton
    • 2
    • 3
  1. 1.Department of Molecular BiologyVanderbilt UniversityNashvilleUSA
  2. 2.Department of ChemistryState University of New York at Stony BrookStony BrookUSA
  3. 3.Departments of Chemistry and BiochemistryVanderbilt UniversityNashvilleUSA

Personalised recommendations