Advertisement

Abstract

Endor is one of the oldest double resonance techniques, the first experiments on solids having been reported by Feher in 1956.(1) In fluid solutions, the nuclear spin relaxation times are shorter than in solids, and higher radiofrequency powers are required to observe endor, for the nuclear transitions must be driven at a rate comparable to that due to relaxation. This requirement makes the instrumentation for solution endor more difficult than that for solids and explains, at least to some extent, why the application of the technique to solutions has lagged somewhat behind that to solids.

Keywords

Hyperfine Coupling ENDOR Spectrum Nuclear Transition Hyperfine Coupling Constant ENDOR Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Feher, Phys. Rev. 103, 834–835 (1956).CrossRefGoogle Scholar
  2. 2.
    A. Cederquist, Ph.D. thesis, Washington University, St. Louis, Missouri (1963).Google Scholar
  3. 3.
    J. S. Hyde and A. H. Maki, J. Chem. Phys. 40, 3117–3118 (1964).CrossRefGoogle Scholar
  4. 4.
    J. S. Hyde, J. Chem. Phys. 43, 1806–1818 (1965).CrossRefGoogle Scholar
  5. 5.
    N. M. Atherton, in Electron Spin Resonance (R. O. C. Norman, ed.), Vol. 1, pp. 32–46 (1973).CrossRefGoogle Scholar
  6. N. M. Atherton, in Electron Spin Resonance Vol. 2, pp. 36–51 (1974).CrossRefGoogle Scholar
  7. Vol. 3, pp. 23-34 (1976), Specialist Periodical Reports, The Chemical Society, London. K. Möbius, also in Electron Spin Resonance, Vol. 4, pp. 16-29 (1977).Google Scholar
  8. 6.
    A. L. Kwiram, Ann. Rev. Phys. Chem. 22, 133–170 (1971).CrossRefGoogle Scholar
  9. 7.
    J. H. Freed, Ann. Rev. Phys. Chem. 23, 265–310 (1972).CrossRefGoogle Scholar
  10. 8.
    J. S. Hyde, Ann. Rev. Phys. Chem. 25, 407–435 (1974).CrossRefGoogle Scholar
  11. 9.
    A. L. Kwiram, in Magnetic Resonance (C. A. McDowell, ed.), M.T.P Int. Rev. Sci. Phys. Chem., Ser. 1, Vol. 4, pp. 271–316, Butterworths’ Publications, London (1972).Google Scholar
  12. 10.
    R. D. Allendoerfer, in Magnetic Resonance (C. A. McDowell, ed.), M.T.P. Int. Rev. Sci. Phys. Chem., Ser. 2, Vol. 4, pp. 29–53, Butterworths’ Publications, London (1975).Google Scholar
  13. 11.
    F. Gerson, J. Jachimowicz, K. Möbius, R. Biehl, J. S. Hyde, and D. S. Leniart, J. Mag. Res. 18, 471–484 (1975).Google Scholar
  14. 12.
    G. Breit and I. I. Rabi, Phys. Rev. 38, 2082–2083 (1931).CrossRefGoogle Scholar
  15. 13.
    A. H. Maki, R. D. Allendoerfer, J. C. Danner, and R. T. Keys, J. Amer. Chem. Soc. 90, 4225–4231 (1968).CrossRefGoogle Scholar
  16. 14.
    D. S. Leniart, J. C. Vedrine, and J. S. Hyde, Chem. Phys. Lett. 6, 637–640 (1970).CrossRefGoogle Scholar
  17. 15.
    A. Abragam and B. Bleaney, Electron Paramagnetic Resonance of Transition Ions, Oxford University Press, Oxford England (1970).Google Scholar
  18. 16.
    G. K. Fraenkel, J. Chem. Phys. 42, 4275–4298 (1965).CrossRefGoogle Scholar
  19. 17.
    G. K. Fraenkel, J. Phys. Chem. 71, 139–171 (1967).CrossRefGoogle Scholar
  20. 18.
    R. D. Allendoerfer and P. H. Rieger, J. Chem. Phys. 46, 3410–3418 (1967).CrossRefGoogle Scholar
  21. R. J. Faber and G. K. Fraenkel, J. Chem. Phys. 47, 2462–2476 (1967).CrossRefGoogle Scholar
  22. 19.
    A. G. Redfield, Adv. Mag. Res. 1, 1–32 (1965).Google Scholar
  23. 20.
    N. M. Atherton and B. Day, J. Chem. Soc, Faraday II 69, 1801–1807 (1973).CrossRefGoogle Scholar
  24. 21.
    H. van Willigen, M. Plato, R. Biehl, K. P. Dinse, and K. Möbius, Molec. Phys. 26, 793–809 (1973).CrossRefGoogle Scholar
  25. 22.
    R. D. Allendoerfer and A. H. Maki, J. Amer. Chem. Soc. 91, 1088–1094 (1969).CrossRefGoogle Scholar
  26. 23.
    M. R. Das, H. D. Connor, D. S. Leniart, and J. H. Freed, J. Amer. Chem. Soc. 92, 2258–2268 (1970).CrossRefGoogle Scholar
  27. 24.
    J. S. Hyde, J. Phys. Chem. 71, 68–73 (1967).CrossRefGoogle Scholar
  28. 25.
    R. Biehl, K. P. Dinse, K. Möbius, M. Plato, H. Kurreck, and U. Mennenga, Tetrahedron 29, 363–368 (1973).CrossRefGoogle Scholar
  29. 26.
    J. H. Freed, D. S. Leniart, and J. S. Hyde, J. Chem. Phys. 47, 2762–2773 (1967).CrossRefGoogle Scholar
  30. 27.
    K. P. Dinse, K. Möbius, and R. Biehl, Z. Naturforsch. 28a, 1069–1080 (1973).Google Scholar
  31. 28.
    K. P. Dinse, R. Biehl, K. Möbius, and M. Plato, J. Mag. Res. 6, 444–452 (1972).Google Scholar
  32. 29.
    J. H. Freed, J. Chem. Phys. 50, 2271–2272 (1968).CrossRefGoogle Scholar
  33. 30.
    K. P. Dinse, R. Biehl, and K. Möbius, J. Chem. Phys. 61, 4335–4341 (1974).CrossRefGoogle Scholar
  34. 31.
    Y. Yamada, S. Toyoda, and K. Ouchi, J. Phys. Chem. 78, 2512–2515 (1974).CrossRefGoogle Scholar
  35. 32.
    R. Biehl, M. Plato, K. Möbius, and K. P. Dinse, in Magnetic Resonance and Related Phenomena: Proceedings of the 17th AMPERE Congress, 1972 (V. Hovi, ed.), pp. 423–426, North-Holland, Amsterdam (1973).Google Scholar
  36. 33.
    T. C. Christidis and F. W. Heineken, Chem. Phys. 2, 239–244 (1973).CrossRefGoogle Scholar
  37. 34.
    C. Heller and H. M. McConnell, J. Chem. Phys. 32, 1535–1539 (1960).CrossRefGoogle Scholar
  38. 35.
    E. W. Stone and A. H. Maki, J. Chem. Phys. 37, 1326–1333 (1962).CrossRefGoogle Scholar
  39. 36.
    R. D. Allendoerfer and D. J. Eustace, J. Phys. Chem. 75, 2765–2769 (1971).CrossRefGoogle Scholar
  40. 37.
    N. M. Atherton, A. J. Blackhurst, and I. P. Cook, Trans. Faraday Soc. 67, 2510–2515 (1971).CrossRefGoogle Scholar
  41. 38.
    N. L. Bauld, J. D. McDermed, C. E. Hudson, Y. S. Rim, J. Zoeller, R. D. Gordon, and J. S. Hyde, J. Amer. Chem. Soc. 91, 6666–6676 (1969).CrossRefGoogle Scholar
  42. 39.
    F. Nemoto, F. Shimoda, and K. Ishizu, Chem. Lett., 693-697 (1974).Google Scholar
  43. 40.
    C. von Borczyskowski, K. Möbius, and M. Plato, J. Mag. Res. 17, 202–211 (1975).Google Scholar
  44. 41.
    J. S. Hyde, R. Breslow, and C. DeBoer, J. Amer. Chem. Soc. 88, 4763–4764 (1966).CrossRefGoogle Scholar
  45. 42.
    R. F. Adams and N. M. Atherton, Molec. Phys. 17, 673–676 (1969).CrossRefGoogle Scholar
  46. 43.
    K. Watanabe, J. Yamauchi, H. Ohya-Nishiguchi, Y. Deguchi, and K. Ishizu, Chem. Lett. 1974, 489–492 (1974).CrossRefGoogle Scholar
  47. 44.
    N. S. Dalai, D. E. Kennedy, and C. A. McDowell, Chem. Phys. Lett. 30, 186–189 (1975).CrossRefGoogle Scholar
  48. 45.
    K. Ishizu, H. Nagai, K. Mukai, M. Kohno, and T. Yamamoto, Chem. Lett., 1261-1264 (1973).Google Scholar
  49. 46.
    N. M. Atherton and A. J. Blackhurst, J. Chem. Soc. Faraday II 68, 470–475 (1972).CrossRefGoogle Scholar
  50. 47.
    Y. Kotake and K. Kuwata, Bull. Chem. Soc. Japan, 45, 2663 (1972).CrossRefGoogle Scholar
  51. 48.
    N. M. Atherton and P. A. Henshaw, J. Chem. Soc. Perkin II, 258-260 (1975).Google Scholar
  52. 49.
    D. H. Whiffen, Molec. Phys. 10, 595–596 (1966).CrossRefGoogle Scholar
  53. 50.
    S. Geschwind, in Hyperfine Interactions (A. J. Freeman and R. B. Frankel, eds.), pp. 225–286, Academic Press, New York (1967).Google Scholar
  54. 51.
    E. R. Davies and T. R. Reddy, Phys. Lett. 31A, 398–399 (1970).Google Scholar
  55. 52.
    J. H. Freed, J. Chem. Phys. 43, 2312–2332 (1965).CrossRefGoogle Scholar
  56. 53.
    N. M. Atherton and M. Brustolon, Molec. Phys. 32, 23–31 (1976).CrossRefGoogle Scholar
  57. 54.
    K. P. Dinse, K. Möbius, M. Plato, R. Biehl, and H. Haustein, Chem. Phys. Lett. 14, 196–200 (1972).CrossRefGoogle Scholar
  58. 55.
    B. J. Herold, A. F. Neiva Correia, and H. dos Santos Veiga, J. Amer. Chem. Soc. 87, 2661–2665 (1965).CrossRefGoogle Scholar
  59. 56.
    K. P. Dinse, K. Möbius, R. Biehl, and M. Plato, in Magnetic Resonance and Related Phenomena: Proceedings of the 17th AMPERE Congress, 1972 (V. Hovi, ed.), pp. 419–422, North-Holland, Amsterdam, 1973.Google Scholar
  60. 57.
    W. Lubitz, K. P. Dinse, K. Möbius, and R. Biehl, Chem. Phys. 8, 371–383 (1975).CrossRefGoogle Scholar
  61. 58.
    J. P. Lloyd and G. E. Pake, Phys. Rev. 94, 579–591 (1954).CrossRefGoogle Scholar
  62. 59.
    M. J. Stephen and G. K. Fraenkel, J. Chem. Phys. 32, 1435–1444 (1960).CrossRefGoogle Scholar
  63. 60.
    M. J. Stephen, J. Chem. Phys. 34, 484–489 (1961).CrossRefGoogle Scholar
  64. 61.
    F. Bloch, Phys. Rev. 102, 104–135 (1956).CrossRefGoogle Scholar
  65. 62.
    R. D. Allendoerfer and A. H. Maki, J. Mag. Res. 3, 398–410 (1970).Google Scholar
  66. 63.
    N. M. Atherton and B. Day, Molec. Phys. 27, 145–158 (1974).CrossRefGoogle Scholar
  67. 64.
    N. M. Atherton and P. A. Kennedy, Chem. Phys. Lett. 43, 186–188 (1976).CrossRefGoogle Scholar
  68. 65.
    B. G. Segal, A. Reymond, and G. K. Fraenkel, J. Chem. Phys. 51, 1336–1352 (1969).CrossRefGoogle Scholar
  69. 66.
    J. H. Freed and G. K. Fraenkel, J. Chem. Phys. 39, 326–348 (1963).CrossRefGoogle Scholar
  70. 67.
    N. M. Atherton and R. S. F. Herding, Nature 198, 987–988 (1963).CrossRefGoogle Scholar
  71. 68.
    N. M. Atherton and B. Day, Chem. Phys. Lett. 15, 428–430 (1972).CrossRefGoogle Scholar
  72. 69.
    D. S. Leniart, H. D. Connor, and J. H. Freed, J. Chem. Phys. 63, 165–199 (1975).CrossRefGoogle Scholar
  73. 70.
    N. M. Atherton, Electron Spin Resonance, Ellis Horwood, Chichester, England (1973).Google Scholar
  74. 71.
    J. H. Freed, J. Phys. Chem. 71, 38–51 (1967).CrossRefGoogle Scholar
  75. 72.
    K. Möbius, Endor and triple resonance on radicals in solution, Paper presented at the Electron Spin Resonance Symposium, University of Nijmegen, Holland, August 1976.Google Scholar
  76. 73.
    R. Biehl, W. Lubitz, K. Möbius, and M. Plato, J. Chem. Phys. 66, 2074–2078 (1977).CrossRefGoogle Scholar
  77. 74.
    W. Lubitz, R. Biehl, and K. Möbius, J. Mag. Res. 27, 411 (1977).Google Scholar
  78. 75.
    B. Kirste, H. Kurreck, W. Lubitz, and K. Schubert, J. Amer. Chem. Soc. 100, 2292–2299 (1978).CrossRefGoogle Scholar
  79. 76.
    E. Van der Drift and K. Möbius, personal communications.Google Scholar

Copyright information

© Plenum Press, New York 1979

Authors and Affiliations

  • Neil M. Atherton
    • 1
  1. 1.Department of ChemistryThe University of SheffieldSheffieldEngland

Personalised recommendations