Advertisement

Instrumentation and Experimental Methods in Double Resonance

  • Daniel S. Leniart

Abstract

The endor technique was introduced by Feher(1) for the investigation of single crystals in 1956 and continued through its embryonic stages to be used as a tool for the investigation of solid state phenomena. In 1963, the technique was extended to systems in the liquid phase by Cederquist(2) as applied to metal-ammonia solutions. In 1964, Maki chose the organic radical galvanoxyl as a candidate for endor in an organic solvent, n-heptane, and collaborating with Hyde at Varian Associates, a prototype instrument was constructed that produced the first endor spectrum of an organic free radical in solution.(3)

Keywords

Double Resonance Frequency Synthesizer ENDOR Spectrum ENDOR Line Pump Frequency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Feher, Phys. Rev. 103, 834 (1956).CrossRefGoogle Scholar
  2. 2.
    A. Cederquist, Ph.D. thesis, Washington University, St. Louis, Missouri (1963).Google Scholar
  3. 3.
    J. S. Hyde and A. H. Maki, J. Chem. Phys. 40, 3117 (1964).CrossRefGoogle Scholar
  4. 4.
    See, e.g., American Laboratory (1974).Google Scholar
  5. 5.
    H. Gunnel, Brown-Boveri Rev. 31, 327 (1944).Google Scholar
  6. 6.
    P. Ruthroff, Proc. IRE 47, 337 (1959).CrossRefGoogle Scholar
  7. 7.
    K. H. Hausser and F. Reinhold, Z. Naturforsch. 16A, 1114 (1961).Google Scholar
  8. K. H. Hausser and F. Reinhold, Phys. Lett. 2 53 (1962).CrossRefGoogle Scholar
  9. R. B. Clarkson, Ph.D. thesis, Princeton University, Princeton, New Jersey (1969).Google Scholar
  10. 8.
    A. L. Terhune, J. Lambe, L. Kikuchi, and J. Baker, Phys. Rev. 123, 1265 (1961).CrossRefGoogle Scholar
  11. 9.
    G. D. Watkins and J. W. Corbett, Phys. Rev. 134A, 1359 (1964).CrossRefGoogle Scholar
  12. 10.
    D. Schmalbein, A. Witte, R. Roder, and G. Laukien, Rev. Sci. Instr. 43, 1664 (1972).CrossRefGoogle Scholar
  13. 11.
    A. H. Maki, R. D. Allendoerfer, J. C. Danner, and R. T. Keys, J. Amer. Chem. Soc. 90, 4225 (1968).CrossRefGoogle Scholar
  14. R. D. Allendoerfer and D. J. Eustace, J. Phys. Chem. 75, 2765 (1971).CrossRefGoogle Scholar
  15. 12.
    N. S. Dalai, D. E. Kennedy, and C. A. McDowell, J. Chem. Phys. 59, 3403 (1973).CrossRefGoogle Scholar
  16. 13.
    K. P. Dinse, K. Möbius, and R. Biehl, Z. Naturforsch. 28A, 1069 (1973).Google Scholar
  17. 14.
    I. Mayagawa, R. B. Davidson, H. A. Helms, Jr., and B. A. Wilkinson, Jr., J. Mag. Res. 10, 156 (1973).Google Scholar
  18. 15.
    T. Yamamoto, M. Kono, K. Sato, T. Miyamae, K. Mukai, and K. Ishizu, JEOL News 10a, 6 (1972).Google Scholar
  19. 16.
    J. S. Hyde, J. Chem. Phys. 43, 1806 (1965).CrossRefGoogle Scholar
  20. Varian Instrument Division Bull, E-700 High Power ENDOR System (1971).Google Scholar
  21. J. S. Hyde, T. Astlind, L. E. G. Eriksson, and A. Ehrenberg, Rev. Sci. Instr. 41, 1598 (1970).CrossRefGoogle Scholar
  22. 17.
    D. S. Leniart, H. D. Connor, and J. H. Freed, J. Chem. Phys. 63, 165 (1975).CrossRefGoogle Scholar
  23. 18.
    M. R. Das, H. D. Connor, D. S. Leniart, and J. H. Freed, J. Amer. Chem. Soc. 90, 4354 (1968).CrossRefGoogle Scholar
  24. 19.
    J. S. Hyde, J. Phys. Chem. 71, 68 (1967).CrossRefGoogle Scholar
  25. 20.
    A. H. Maki, R. Allendoerfer, J. C. Danner, and R. T. Keyes, J. Amer. Chem. Soc. 90, 4225 (1968).CrossRefGoogle Scholar
  26. 21.
    N. M. Atherton and A. J. Blackhurst, J. Chem. Soc. Faraday Trans. II, 68, 470 (1972).CrossRefGoogle Scholar
  27. 22.
    K. Möbius, H. van Willigen, and A. H. Maki, Mol. Phys. 20, 289 (1971).CrossRefGoogle Scholar
  28. 23.
    N. S. Dalai, D. E. Kennedy, and C. A. McDowell, J. Chem. Phys. 59, 3403 (1973).CrossRefGoogle Scholar
  29. 24.
    F. Gerson, J. Jachimowiez, K. Möbius, R. Biehl, J. S. Hyde, and D. S. Leniart, J. Mag. Res. 18, 471 (1975).Google Scholar
  30. 25.
    J. S. Hyde, G. H. Rist, and L. E. G. Eriksson, J. Phys. Chem. 72, 4269 (1968).CrossRefGoogle Scholar
  31. 26.
    H. D. Connor, Ph.D. thesis, Cornell University, Ithaca, New York (1972).Google Scholar
  32. 27.
    D. S. Leniart, Ph.D. thesis, Cornell University, Ithaca, New York (1971).Google Scholar
  33. 28.
    H. Wahlquist, J. Chem. Phys. 35, 1709 (1961).CrossRefGoogle Scholar
  34. 29.
    R. D. Allendoerfer, P. E. Gallagher, and P. T. Landsburg, J. Amer. Chem. Soc. 94, 7702 (1972).CrossRefGoogle Scholar
  35. 30.
    J. H. Freed, J. Chem. Phys. 43, 2312 (1965).CrossRefGoogle Scholar
  36. 31.
    J. H. Freed, D. S. Leniart, and H. D. Connor, J. Chem. Phys. 58, 3089 (1973).CrossRefGoogle Scholar
  37. 32.
    J. H. Freed, D. S. Leniart, and J. S. Hyde, J. Chem. Phys. 47, 2762 (1967).CrossRefGoogle Scholar
  38. 33.
    K. P. Dinse, R. Biehl, K. Möbius, and M. Plato, J. Mag. Res. 6, 444 (1972).Google Scholar
  39. 34.
    P. P. Sorokin, G. J. Lasher, and I. L. Gelles, Phys. Rev. 118, 939 (1960).CrossRefGoogle Scholar
  40. 35.
    W. P. Unruh, and J. W. Culvahouse, Phys. Rev. 129, 2441 (1963).CrossRefGoogle Scholar
  41. 36.
    P. R. Moran, Phys. Rev. 135A, 247 (1964).CrossRefGoogle Scholar
  42. 37.
    J. S. Hyde, J. C. W. Chien, and J. H. Freed, J. Chem. Phys. 48, 4211 (1968).CrossRefGoogle Scholar
  43. 38.
    E. A. Sokolov and V. A. Benderskii, Prib. Tekh. Eksper. 2, 232 (1969). [English Translation: Instrum. Exper. Technol. 2, 526-527].Google Scholar
  44. 39.
    P. A. Stunkas, V. A. Benderskii, L. A. Blumenfeld, and E. A. Sokolov, Opt. Spektros. 28, 278 (1970).Google Scholar
  45. 40.
    P. A. Stunkas, V. A. Benderskii, and A. A. Sokolov, Opt. Spektros. 28, 487 (1970).Google Scholar
  46. 41.
    V. A. Benderskii, L. A. Blumfeld, P. A. Stunkas, and E. A. Sokolov, Nature 220, 365 (1968).CrossRefGoogle Scholar
  47. 42.
    J. S. Hyde, R. C. Sneed, and G. H. Rist, J. Chem. Phys. 51, 1404 (1969).CrossRefGoogle Scholar
  48. 43.
    T. S. Kuau, D. S. Tinti, and M. A. El-Sayed, Chem. Phys. Lett. 4, 507 (1970).CrossRefGoogle Scholar
  49. 44.
    M. Leung, and M. A. El-Sayed, Chem. Phys. Lett. 16, 454 (1972).CrossRefGoogle Scholar
  50. 45.
    H. M. Vieth, H. Brunner, and K. H. Hausser, Z. Naturforsch 26A, 167 (1971).Google Scholar
  51. 46.
    H. M. Vieth, Elektron-Elektron doppel resonanz von nitraxid-Radikalen in Lösung, Ph.D. thesis, University of Heidelberg, Heidelberg, West Germany (1973).Google Scholar
  52. 47.
    E. Stetter, H. M. Vieth, and K. H. Hausser, J. Mag. Res. 23, 493 (1976).Google Scholar
  53. 48.
    F. Chiarini, M. Martinelli, and P. A. Rolla, Multiple quantum transitions in eldor spectro-scopy, Lett. Nuovo Cimento Soc. Ital. Fis. [2] 5(2), 197–201 (1972) (in English).CrossRefGoogle Scholar
  54. 49.
    G. Conciauro, and E. Randazzo, Rev. Sci. Instr. 44, 1087 (1973).CrossRefGoogle Scholar
  55. 50.
    G. Conciauro, M. Puglisi, C. Franconi, P. Galuppi, and E. Randazzo, J. Mag. Res. 9, 363 (1973).Google Scholar
  56. 51.
    J. Smidt, and A. Mehlkopf, private communication.Google Scholar
  57. 52.
    E. Van der Drift, A. F. Mehlkopf, and J. Smidt, Chem. Phys. Lett. 36, 385 (1975).CrossRefGoogle Scholar
  58. 53.
    M. M. Dorio and J. C. W. Chien, Macromolecules 8, 734 (1975).CrossRefGoogle Scholar
  59. M. M. Dorio, and J. C. W. Chien, J. Chem. Phys. 62, 3963 (1975).CrossRefGoogle Scholar
  60. M. M. Dorio, Ph.D. thesis, University of Massachusetts, Amherst (1975).Google Scholar
  61. 54.
    M. Smigel, L. Dalton, J. Hyde, and L. Dalton, Proc. Natl. Acad. Sci. 71, 1925 (1974).CrossRefGoogle Scholar
  62. 55.
    J. S. Hyde, M. Smigel, L. Dalton, and L. Dalton, J. Chem. Phys. 62, 1655 (1975).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1979

Authors and Affiliations

  • Daniel S. Leniart
    • 1
  1. 1.Instrument DivisionVarian AssociatesPalo AltoUSA

Personalised recommendations