Electron-Nuclear-Nuclear TRIPLE Resonance of Radicals in Solutions

  • Klaus Möbius
  • Reinhard Biehl


In molecular spectroscopy, the introduction of more than one resonant electromagnetic field is a well-established technique applied in the full spectral range between radiofrequency (rf) and ultraviolet.(1) The main motivation for extending single resonance to double or multiple resonance techniques can be twofold: (1) either one wants to increase the sensitivity of detection by “quantum transformation” from low-frequency absorbed quanta to high-frequency detected quanta, or (2) one wants to enhance the resolution of the spectra, i.e., reduce the number of spectral lines in a given frequency range by introducing specific coherent time-dependent interactions that average out unwanted static interactions in the Hamiltonian,(2) by imposing additional “selection rules,”(2) or by exploiting degeneracies of certain transitions.(3)


Triple Line Triple Resonance ENDOR Spectrum ENDOR Line Coherence Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Möbius, Ber. Buns. Ges. 78, 1116–1125 (1974).Google Scholar
  2. 2.
    U. Haeberlen, Adv. Mag. Res. suppl. 1 (1976).Google Scholar
  3. 3.
    J. S. Hyde, J. Chem. Phys. 43, 1806–1818 (1965).CrossRefGoogle Scholar
  4. 4.
    W. von Philipsborn, Angew. Chem. 83, 470–489 (1971).CrossRefGoogle Scholar
  5. 5.
    R. W. Field, G. A. Capelle, and M. A. Revelli, J. Chem. Phys. 63, 3228–3237 (1975).CrossRefGoogle Scholar
  6. 6.
    J. S. Hyde, in Magnetic Resonance in Biological Systems (A. Ehrenberg, B. G. Malmström, and T. Vänngard, eds.), p. 63, Pergamon Press, Oxford (1967).Google Scholar
  7. 7.
    F. Gerson, J. Jachimowicz, K. Möbius, R. Biehl, J. S. Hyde, and D. S. Leniart, J. Mag. Res. 18, 471–484 (1975).Google Scholar
  8. 8.
    D. S. Leniart, H. D. Connor, and J. H. Freed, J. Chem. Phys. 63, 165–198 (1975).CrossRefGoogle Scholar
  9. 9.
    J. H. Freed, J. Chem. Phys. 50, 2271–2272 (1969).CrossRefGoogle Scholar
  10. 10.
    K. P. Dinse, R. Biehl, and K. Möbius, J. Chem. Phys. 61, 4335–4341 (1974).CrossRefGoogle Scholar
  11. 11.
    R. Biehl, M. Plato, and K. Möbius, J. Chem. Phys. 63, 3515–3521 (1975).CrossRefGoogle Scholar
  12. 12.
    R. J. Cook and D. H. Whiffen, Proc. Phys. Soc. London 84, 845–898 (1964).CrossRefGoogle Scholar
  13. 13.
    N. S. Dalai and C. A. McDowell, Chem. Phys. Lett. 6, 617–619 (1970).CrossRefGoogle Scholar
  14. 14.
    W. Kolbe and N. Edelstein, Phys. Rev. B4, 2869–2875 (1971).Google Scholar
  15. 15.
    J. A. R. Coope, N. S. Dalai, C. A. McDowell, and R. Srinivasan, Molec. Phys. 24, 403–415 (1972).CrossRefGoogle Scholar
  16. 16.
    J. M. Baker and W. B. J. Blake, Phys. Lett. A31, 61–62 (1970).Google Scholar
  17. 17.
    D. A. Hampton and Grace C. Moulton, J. Chem. Phys. 63, 1078–1082 (1975).CrossRefGoogle Scholar
  18. 18.
    A. H. Maki, R. D. Allendoerfer, J. C. Danner, and R. T. Keys, J. Amer. Chem. Soc. 90, 4225–4231 (1968).CrossRefGoogle Scholar
  19. 19.
    K. P. Dinse, R. Biehl, and K. Möbius, Z. Naturforsch. A28, 1069–1080 (1973).Google Scholar
  20. 20.
    K. Gruber, J. Forrer, A. Schweiger, and Hs. H. Günthard, J. Phys. E7, 569–574 (1974).Google Scholar
  21. 21.
    N. S. Dalai, D. E. Kennedy, and C. A. McDowell, J. Chem. Phys. 59, 3403–3410 (1973).CrossRefGoogle Scholar
  22. 22.
    D. H. Whiffen, Molec. Phys. 10, 595–596 (1966).CrossRefGoogle Scholar
  23. 23.
    J. H. Freed, J. Chem. Phys. 43, 2312–2332 (1965).CrossRefGoogle Scholar
  24. 24.
    J. H. Freed, J. Phys. Chem. 71, 38–51 (1967).CrossRefGoogle Scholar
  25. 25.
    J. H. Freed, D. S. Leniart, and J. S. Hyde, J. Chem. Phys. 47, 2762–2773 (1967).CrossRefGoogle Scholar
  26. 26.
    J. H. Freed, D. S. Leniart, and H. D. Connor, J. Chem. Phys. 58, 3089–3105 (1973).CrossRefGoogle Scholar
  27. 27.
    J. H. Freed, in Electron Spin Relxation in Liquids (L. T. Muus and P. W. Atkins, eds.), pp. 503–530, Plenum Press, New York (1972).CrossRefGoogle Scholar
  28. 28.
    F. Bloch, Phys. Rev. 102, 104 (1956).CrossRefGoogle Scholar
  29. 29.
    W. A. Anderson and R. Freeman, J. Chem. Phys. 37, 85–103 (1962).CrossRefGoogle Scholar
  30. 30.
    R. Freeman and W. A. Anderson, J. Chem. Phys. 37, 2053–2073 (1962).CrossRefGoogle Scholar
  31. 31.
    M. Plato, unpublished results (1976).Google Scholar
  32. 32.
    H. von Willigen, M. Plato, R. Biehl, K. P. Dinse, and K. Möbius, Molec. Phys. 26, 793–809 (1973).CrossRefGoogle Scholar
  33. 33.
    R. Freeman and D. H. Whiffen, Molec. Phys. 4, 321–325 (1961).CrossRefGoogle Scholar
  34. 34.
    K. P. Dinse, K. Möbius, M. Plato, and R. Biehl, Chem. Phys. Lett. 14, 196–200 (1972).CrossRefGoogle Scholar
  35. 35.
    K. P. Dinse, R. Biehl, K. Möbius, and M. Plato, J. Mag. Res. 6, 444–452 (1972).Google Scholar
  36. 36.
    K. Möbius, H. Haustein, and M. Plato, Z. Naturforsch. A23, 1626–1638 (1968).Google Scholar
  37. 37.
    K. H. Hausser, Proc. Colloq. Ampere 14, 25–39 (1967).Google Scholar
  38. 38.
    K. P. Dinse, R. Biehl, K. Möbius, and H. Haustein, Chem. Phys. Lett. 12, 399–402 (1971).CrossRefGoogle Scholar
  39. 39.
    R. D. Allendoerfer and A. H. Maki, J. Mag. Res. 3, 396–410 (1970).Google Scholar
  40. 40.
    K. Möbius, H. von Willigen, and A. H. Maki, Molec. Phys. 20, 289–304 (1971).CrossRefGoogle Scholar
  41. 41.
    E. de Boer and J. L. Sommerdijk, in Ions and Ion Pairs in Organic Reactions (M. Szwarc, ed.), Vol. 1, Chap. 7, John Wiley and Sons, New York (1974).Google Scholar
  42. 42.
    N. M. Atherton, in IUPAC 23rd International Congress, Vol. 4, pp. 469–483, Butterworth’s, London (1971).Google Scholar
  43. 43.
    N. M. Atherton and B. Day, J. Chem. Soc. 69, 1801–1807 (1973).Google Scholar
  44. 44.
    E. de Boer and H. von Willigen, in Progress in NMR Spectroscopy (J. W. Emsley, J. Feeney, and L. H. Suttcliffe, eds.), Vol. 2, pp. 111–161, Pergamon Press, Oxford (1967).Google Scholar
  45. 45.
    N. Hirota, J. Amer. Chem. Soc. 89, 32–41 (1967).CrossRefGoogle Scholar
  46. 46.
    G. W. Canters and E. de Boer, Molec. Phys. 26, 1185–1198 (1973).CrossRefGoogle Scholar
  47. 47.
    J. S. Hyde, R. C. Sneed, Jr., and G. H. Rist, J. Chem. Phys. 51, 1404–1416 (1969).CrossRefGoogle Scholar
  48. 48.
    N. W. Lord and S. M. Blinder, J. Chem. Phys. 34, 1699–1708 (1961).CrossRefGoogle Scholar
  49. 49.
    J. Heidberg, J. A. Weil, G. A. Janusonis, and J. K. Anderson, J. Chem. Phys. 41, 1033–1044 (1964).CrossRefGoogle Scholar
  50. 50.
    N. S. Dalai, D. E. Kennedy, and C. A. McDowell, J. Chem. Phys. 61, 1689–1697 (1974).CrossRefGoogle Scholar
  51. 51.
    N. S. Dalai, D. E. Kennedy, and C. A. McDowell, Chem. Phys. Lett. 30, 186–189 (1975).CrossRefGoogle Scholar
  52. 52.
    C. von Borczyskowski, K. Möbius, and M. Plato, J. Mag. Res. 17, 202–211 (1975).Google Scholar
  53. 53.
    S. E. O’Connor, R. I. Walter, R. Biehl, and K. Möbius, J. Phys. Chem. (to be published).Google Scholar

Copyright information

© Plenum Press, New York 1979

Authors and Affiliations

  • Klaus Möbius
    • 1
  • Reinhard Biehl
    • 1
  1. 1.Institut für MolekülphysikFreie Universität BerlinBerlinGermany

Personalised recommendations