Advertisement

Principles and Applications of Optical Perturbation-Electron Paramagnetic Resonance (OPEPR)

  • Haim Levanon

Abstract

The study of the dynamics associated with the production of paramagnetic species or states upon optical pumping has been gaining interest in recent years in a large variety of fields. In this chapter, we confine ourselves to describing the direct epr detection of two groups of transient paramagnetic systems that are generated under light excitation: (a) molecules promoted to their photoexcited triplets and (b) free radicals.

Keywords

Light Pulse Paramagnetic Species Electron Spin Polarization Detection Magnetic Resonance Optical Chemically Induce Dynamic Electron Polarization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Olmsted and M. A. El-Sayed, in Creation and Detection of the Excited State (W. R. Ware, ed.), Vol. 2, pp. 1–62, Marcel Dekker Inc., New York (1974).Google Scholar
  2. 2.
    M. A. El-Sayed, Ann. Rev. Phys. Chem. 26, 235–258 (1975).CrossRefGoogle Scholar
  3. 3.
    K. H. Hausser and H. C. Wolf, in Advances in Magnetic Resonance (J. S. Waugh, ed.), Vol. 8, pp. 85–121, Academic Press, New York (1976), and references therein.Google Scholar
  4. 4.
    B. Smaller, J. R. Remko, and E. C. Avery, J. Chem. Phys. 48, 5174–5181 (1968).CrossRefGoogle Scholar
  5. 5.
    P. W. Atkins and K. A. McLauchlan, in Chemically Induced Magnetic Polarization (A. R. Lepley and G. L. Closs, eds.), Chapter 2, pp. 42–93, Wiley-Interscience, New York (1973).Google Scholar
  6. 6.
    N. C. Verma and R. W. Fessenden, J. Chem. Phys. 65, 2139–2155 (1976).CrossRefGoogle Scholar
  7. 7.
    H. Levanon and S. I. Weissman, Israel J. Chem. 10, 1–5 (1972).Google Scholar
  8. 8.
    J. B. Pedersen, C. E. M. Hansen, H. Parbo, and L. T. Muus, J. Chem. Phys. 63, 2398–2405 (1975).CrossRefGoogle Scholar
  9. 9.
    H. Paul, Chem. Phys. 15, 115–129 (1976).CrossRefGoogle Scholar
  10. 10.
    T. S. Lin, Chem. Phys. Lett. 28, 77–82 (1974).CrossRefGoogle Scholar
  11. 11.
    J. H. Freed and J. B. Pedersen, in Advances in Magnetic Resonance (J. S. Waugh, ed.), Vol. 8, pp. 1–84, Academic Press, New York (1975).Google Scholar
  12. 12.
    S. S. Kim and S. I. Weissman, J. Mag. Res. 24, 167–169 (1976).Google Scholar
  13. 13.
    J. R. Bolton and J. T. Warden, in Creation and Detection of the Excited State (W. R. Ware, ed.), Vol. 2, pp. 63–97, Marcel Dekker, Inc., New York (1974).Google Scholar
  14. 14.
    H. Levanon, Chem. Phys. Lett. 9, 257–259 (1971).CrossRefGoogle Scholar
  15. 15.
    H. Levanon and S. I. Weissman, J. Amer. Chem. Soc. 93, 4309–4310 (1971).CrossRefGoogle Scholar
  16. 16.
    A. Friedenberg and H. Levanon, Chem. Phys. Lett. 41, 84–86 (1976).CrossRefGoogle Scholar
  17. 17.
    H. Levanon, Varian Instrument Application 5, 6–7 (1971).Google Scholar
  18. 18.
    M. Schwoerer and H. Sixl, Z. Naturforsch. A24, 952–967 (1969).Google Scholar
  19. 19.
    R. H. Clarke, Chem. Phys. Lett. 6, 413–416 (1970).CrossRefGoogle Scholar
  20. 20.
    H. Levanon and S. Vega, J. Chem. Phys. 41, 2265–2274 (1975).Google Scholar
  21. 21.
    E. Wasserman, L. C. Snyder, and W. A. Yager, J. Chem. Phys. 41, 1763–1772 (1964).CrossRefGoogle Scholar
  22. 22.
    S. P. McGlynn, T. Azumi, and M. Kinoshita, Molecular Spectroscopy of the Triplet State, Prentice-Hall, Englewood Cliffs, New Jersey (1969).Google Scholar
  23. 23.
    Von E. Gaviola, Z. Phys. 42, 853–861 (1927).CrossRefGoogle Scholar
  24. 23a.
    E. A. Baily, Jr., and G. K. Rolefson, J. Chem. Phys. 21, 1315–1322 (1953).CrossRefGoogle Scholar
  25. 24.
    M. Forster, U. P. Fringeli, and Hs. H. Günthard, Helv. Chim. Acta 56, 389–407 (1973).CrossRefGoogle Scholar
  26. 25.
    K. Loth, M. Andrist, F. Grat, and Hs. H. Günthard, Chem. Phys. Lett. 29, 163–168 (1974).CrossRefGoogle Scholar
  27. 26.
    S. R. Langhoff, E. R. Davidson, M. Gouterman, W. R. Leenstra, and A. Kwiram, J. Chem. Phys. 62, 169–176 (1975), and references therein.CrossRefGoogle Scholar
  28. 27.
    J. Subramanian, in Porphyrins and Metalloporphyrins (K. M. Smith, ed.), Chapter 13, pp. 555–586, Elsevier Scientific Publishing Co., Amsterdam (1975).Google Scholar
  29. 28.
    E. V. Shpolskii, Sov. Phys. Usp. 3, 372–389 (1960).CrossRefGoogle Scholar
  30. E. V. Shpolskii, Sov. Phys. Usp. 5, 522–531 (1962).CrossRefGoogle Scholar
  31. E. V. Shpolskii, Sov. Phys. Usp. 6, 411–427 (1963) (English translation).CrossRefGoogle Scholar
  32. 29.
    I. Y. Chan, W. G. van Dorp, T. J. Schaafsma, and T. H. van der Waals, Molec. Phys. 22, 741–751 (1971).CrossRefGoogle Scholar
  33. I. Y. Chan, W. G. van Dorp, T. J. Schaafsma, and T. H. van der Waals, Molec. Phys. 22, 753–760 (1971).CrossRefGoogle Scholar
  34. 30.
    A. Scherz, N. Orbach, and H. Levanon, Israel J. Chem. 12, 1037–1048 (1974).Google Scholar
  35. 31.
    E. Nissani, A. Scherz, and H. Levanon, Photochem. Photobiol. 25, 93–101 (1977).CrossRefGoogle Scholar
  36. 32.
    R. H. Clarke and R. E. Connors, J. Chem. Phys. 62, 1600–1601 (1975).CrossRefGoogle Scholar
  37. 33.
    W. G. van Dorp, W. H. Schoemaker, M. Soma, and J. H. van der Waals, Molec. Phys. 30, 1701–1721 (1975).CrossRefGoogle Scholar
  38. 34.
    F. Metz, S. Friedrich, and G. Hohlneicher, Chem. Phys. Lett. 16, 353–358 (1972).CrossRefGoogle Scholar
  39. 35.
    J. H. van der Waals and M. S. de Groot, in The Triplet State (A. Zahlan, ed.) pp. 101–132, Cambridge Univ. Press, London (1967).Google Scholar
  40. 36.
    U. Eliav and H. Levanon, Chem. Phys. Lett. 36, 377–381 (1975).CrossRefGoogle Scholar
  41. 37.
    J. Franck and J. L. Rosenberg, J. Theoret. Biol. 36, 377–381 (1964).Google Scholar
  42. 38.
    R. K. Clayton, Ann. Rev. Biophys. Bioeng. 2, 131–156 (1973).CrossRefGoogle Scholar
  43. 39.
    W. W. Parson and R. J. Codgell, Biochim. Biophys. Acta 416, 105–149 (1975).Google Scholar
  44. 40.
    J. R. Norris, H. Scheer, and J. J. Katz, Ann. N.Y. Acad. Sci. 244, 260–280 (1975), and references therein.CrossRefGoogle Scholar
  45. 41.
    F. K. Fong and N. Winograd, J. Amer. Chem. Soc. 98, 2287–2289 (1976).CrossRefGoogle Scholar
  46. 42.
    R. H. Clarke, R. E. Connors, and H. A. Frank, Biochem. Biophys. Res. Commun. 71, 671–675 (1976).CrossRefGoogle Scholar
  47. 43.
    J. S. Leigh and P. L. Dutton, Biochim. Biophys. Acta 357, 67–77 (1974).CrossRefGoogle Scholar
  48. 44.
    M. C. Thurenauer, J. J. Katz, and J. R. Norris, Proc. Nat. Acad. Sci. USA 72, 3270–3274 (1975).CrossRefGoogle Scholar
  49. 45.
    R. H. Clarke, R. E. Connors, H. A. Frank, and J. C. Hock, Chem. Phys. Lett. 45, 523–528 (1977).CrossRefGoogle Scholar
  50. 46.
    J. R. Norris, R. A. Uphaus, and J. J. Katz, Chem. Phys. Lett. 31, 157–161 (1975).CrossRefGoogle Scholar
  51. 47.
    R. H. Clarke, R. E. Connors, T. J. Schaafsma, J. F. Kleibeuker, and R. J. Platenkamp, J. Amer. Chem. Soc. 98, 3674–3677 (1976) and references therein.CrossRefGoogle Scholar
  52. 48.
    R. A. Uphaus, J. R. Norris, and J. J. Katz, Biochem. Biophys. Res. Commun. 61, 1057–1063 (1974).CrossRefGoogle Scholar
  53. 49.
    R. H. Clarke and R. H. Hofeldt, J. Chem. Phys. 61, 4582–4587 (1974).CrossRefGoogle Scholar
  54. 50.
    H. Levanon and A. Scherz, Chem. Phys. Lett. 31, 119–124 (1975).CrossRefGoogle Scholar
  55. 51.
    J. F. Kleibeuker and T. J. Schaafsma, Chem. Phys. Lett. 29, 116–122 (1974).CrossRefGoogle Scholar
  56. 52.
    B. N. Srinivasen, M. Kineshita, J. W. Rabalais, and S. P. McGlynn, J. Chem. Phys. 48, 1924–1931 (1968).CrossRefGoogle Scholar
  57. 53.
    J. S. Brinen, J. Chem. Phys. 49, 586–590 (1968).CrossRefGoogle Scholar
  58. 54.
    H. Levanon and S. I. Weissman, Chem. Phys. Lett. 10, 25–28 (1971).CrossRefGoogle Scholar
  59. 55.
    M. Kinoshita, T. N. Misra, and S. P. McGlynn, J. Chem. Phys. 45, 817–821 (1966).CrossRefGoogle Scholar
  60. 56.
    E. T. Harrigen and N. Hirota, J. Chem. Phys. 49, 2301–2313 (1968).CrossRefGoogle Scholar
  61. 57.
    L. Pakkarinen and H. Linschitz, J. Amer. Chem. Soc. 82, 2407–2411 (1960).CrossRefGoogle Scholar
  62. 58.
    S. G. Cohen, A. Parola, and G. H. Parsons, Jr., Chem. Rev. 73, 141–161 (1973).CrossRefGoogle Scholar
  63. 59.
    J. C. Scaiano, J. Photochem. 2, 81–118 (1973/4).CrossRefGoogle Scholar
  64. 60.
    H. D. Burrows, Photochem. Photobiol. 19, 241–243 (1974).CrossRefGoogle Scholar
  65. 61.
    A. Matsuzaki, S. Nagakura, and K. Yoshihara, Bull. Chem. Soc. Japan 47, 1152–1157(1974).CrossRefGoogle Scholar
  66. 62.
    M. Zerner, M. Gouterman, and H. Kobayashi, Theoret. Chim. Acta 6, 363–400 (1966).CrossRefGoogle Scholar
  67. 63.
    Y. Harel, J. Manassen, and H. Levanon, Photochem. and Photobiol. 23, 337–341 (1976).CrossRefGoogle Scholar
  68. 64.
    D. Mauzerall and G. Feher, Biochim. Biophys. Acta 79, 430–432 (1964).CrossRefGoogle Scholar
  69. D. Mauzerall and G. Feher, Biochim. Biophys. Acta 88, 658–660 (1969).Google Scholar
  70. 65.
    P. W. Atkins, A. J. Dobbs, G. T. Evans, K. A. McLauchlan, and P. W. Percival, Molec. Phys. 27, 769–777 (1974).CrossRefGoogle Scholar
  71. 66.
    G. W. Gokel and H. D. Durst, Synthesis 1976, 168–184 (1976), and references therein.CrossRefGoogle Scholar
  72. 67.
    M. T. Lok, F. J. Tehan, and J. L. Dye, J. Phys. Chem. 76, 2975 (1972).CrossRefGoogle Scholar
  73. 68.
    J. L. Dye, D. W. Andrews, and S. E. Mathews, J. Phys. Chem. 79, 3065–3070 (1975).CrossRefGoogle Scholar
  74. 69.
    J. L. Dye, in Electrons in Fluids (J. Jortner and C. R. Kestner, eds.), p. 77, Springer-Verlag, West Berlin (1973).CrossRefGoogle Scholar
  75. 70.
    R. Catterall and P. Edwards, J. Phys. Chem. 79, 3010–3017 (1975).CrossRefGoogle Scholar
  76. 71.
    A. Gaathon and M. Ottolenghi, Israel J. Chem. 8, 165–180 (1970).Google Scholar
  77. 72.
    J. Eloranto and H. Linschitz, J. Chem. Phys. 38, 2214–2219 (1970).CrossRefGoogle Scholar
  78. 73.
    S. H. Glarum and J. H. Marshall, J. Chem. Phys. 52, 5555–5565 (1970).CrossRefGoogle Scholar
  79. 74.
    A. Friedenberg and H. Levanon, J. Phys. Chem. 81, 766–771 (1977).CrossRefGoogle Scholar
  80. 75.
    J. K. S. Wan, S. K. Wong, and D. A. Hutchinson, Accounts Chem. Res. 7, 58–64 (1974), and references therein.CrossRefGoogle Scholar
  81. 76.
    S. Geschwind, Electron Paramagnetic Resonance, Plenum Press, New York (1972).Google Scholar
  82. 77.
    S. G. Boxer and G. L. Closs, J. Amer. Chem. Soc. 97, 3268–3270 (1975).CrossRefGoogle Scholar
  83. 78.
    D. Stehlik in Excited States (E. C. Lim ed.), Vol. 3, pp. 204–300, Academic Press, New York (1977).Google Scholar
  84. 79.
    C. J. Winscon, Z. Naturforsch. 30, 571–582 (1975).Google Scholar
  85. 80.
    U. Eliav and H. Levanon, Chem. Phys. Lett. 55, 369–374 (1978).CrossRefGoogle Scholar
  86. 81.
    W. Hägele, D. Schmid, and H. C. Wolf, Z. Naturforsch. 339, 94–97 (1978).Google Scholar
  87. 82.
    S. S. Kim and S. I. Weissman, Chem. Phys. Lett. 58, 326–328 (1978).CrossRefGoogle Scholar
  88. 83.
    Y. Harel and J. Manassen, J. Amer. Chem. Soc. 100, 6228–6234 (1978).CrossRefGoogle Scholar
  89. 84.
    J. F. Kleibeuker, R. J. Platenkamp, and T. J. Schaafsma, Chem. Phys. 27, 51–64 (1978).CrossRefGoogle Scholar
  90. 85.
    A. D. Trifunac and J. R. Norris, Chem. Phys. Lett. 59, 140–142 (1979).CrossRefGoogle Scholar
  91. 86.
    A. D. Trifunac and M. C. Thurnauer, in Time Domain Electron Spin Resonance Spectroscopy (L. Kevan and R. N. Schwartz, eds.), Wiley-Interscience, New York (in press).Google Scholar
  92. 87.
    For a recent review on this subject see, e.g., H. Levanon and J. R. Norris, Chem. Revs. 3, 185–198 (1978).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1979

Authors and Affiliations

  • Haim Levanon
    • 1
  1. 1.Radiation Laboratory and Department of ChemistryUniversity of Notre DameNotre DameUSA

Personalised recommendations