Advertisement

ENDOR of Triplet State Systems in Solids

  • Marvin D. Kemple

Abstract

Physical systems possessing one unit of effective electron spin angular momentum have been the subject of extensive study. Such triplet state systems may be excited- and ground-state molecules, pairs of free radical molecules, transition element ions, pairs of ions, and defects in solids. The molecules may range from relatively simple diatomic species to multiatom biological complexes. Detailed magnetic resonance measurements can yield information concerning wave functions, geometry and structure, lifetime of excited states, interactions with the environment, and other properties of these triplet state entities. We will discuss here the particular usefulness of electron nuclear double resonance(1) (endor)—nuclear magnetic resonance transitions detected by means of electron paramagnetic resonance (epr). Emphasis will be placed on triplet species in solids.

Keywords

Electron Paramagnetic Resonance Electron Paramagnetic Resonance Spectrum Triplet State Spin Density Hyperfine Interaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Feher, Phys. Rev. 103, 834–835 (1956).CrossRefGoogle Scholar
  2. 2.
    G. N. Lewis, D. Lipkin, and T. T. Magel, J. Am. Chem. Soc. 63, 3005–3018 (1941).CrossRefGoogle Scholar
  3. 3.
    G. N. Lewis and M. Kasha, J. Am. Chem. Soc. 66, 2100–2116 (1944).CrossRefGoogle Scholar
  4. 4.
    G. N. Lewis and M. Kasha, J. Am. Chem. Soc. 67, 994–1003 (1945).CrossRefGoogle Scholar
  5. 5.
    A. Terenin, Acta Physiochim. URSS 18, 210–241 (1943).Google Scholar
  6. 6.
    C. A. Hutchison, Jr., and B. W. Mangum, J. Chem. Phys. 29, 952–953 (1958).CrossRefGoogle Scholar
  7. 7.
    C. A. Hutchison, Jr., and B. W. Mangum, J. Chem. Phys. 34, 908–922 (1961).CrossRefGoogle Scholar
  8. 8.
    J. H. van der Waals and M. S. de Groot, Molec. Phys. 2, 333–340 (1959).CrossRefGoogle Scholar
  9. 9.
    J. H. van der Waals and M. S. de Groot, Molec. Phys. 3, 190–200 (1960).CrossRefGoogle Scholar
  10. 10.
    W. A. Yager, E. Wasserman, and R. M. R. Cramer, J. Chem. Phys. 37, 1148–1149 (1962).CrossRefGoogle Scholar
  11. 11.
    E. Fermi, Z. Phys. 60, 320–333 (1930).CrossRefGoogle Scholar
  12. 12.
    A. Abragam and B. Bleaney, Electron Paramagnetic Resonance of Transition Ions, Clarendon Press, Oxford (1970).Google Scholar
  13. 13.
    A. W. Hornig and J. S. Hyde, Molec. Phys. 6, 33–41 (1963).CrossRefGoogle Scholar
  14. 14.
    R. M. Hochstrasser and T.-S. Lin, J. Chem. Phys. 49, 4929–4945 (1968).CrossRefGoogle Scholar
  15. 15.
    M. Iwasaki, K. Minakata, and K. Toriyama, J. Chem. Phys. 54, 3225–3226 (1971).CrossRefGoogle Scholar
  16. 16.
    K. Minakata and M. Iwasaki, Molec. Phys. 23, 1115–1131 (1972).CrossRefGoogle Scholar
  17. 17.
    D. S. Tinti, G. Kothandaraman, and C. B. Harris, J. Chem. Phys. 59, 190–193 (1973).CrossRefGoogle Scholar
  18. 18.
    G. Kothandaraman, H. J. Yue, and D. W. Pratt, J. Chem. Phys. 61, 2102–2111 (1974).CrossRefGoogle Scholar
  19. 19.
    C. A. Hutchison, Jr., and G. A. Pearson, J. Chem. Phys. 47, 520–533 (1967).CrossRefGoogle Scholar
  20. 20.
    A. M. Ponte Goncalves and C. A. Hutchison, Jr., J. Chem. Phys. 49, 4235–4236 (1968).CrossRefGoogle Scholar
  21. 21.
    H. C. Brenner, C. A. Hutchison, Jr., and M. D. Kemple, J. Chem. Phys. 60, 2180–2181 (1974).CrossRefGoogle Scholar
  22. 22.
    G. B. Robertson, Nature (London) 191, 593–594 (1961).CrossRefGoogle Scholar
  23. 23.
    J. Trotter, Acta Crystallog. 14, 1135–1140 (1961).CrossRefGoogle Scholar
  24. 24.
    A. Hargreaves and S. H. Rizvi, Acta Crystallog. 15, 365–373 (1962).CrossRefGoogle Scholar
  25. 25.
    R. McWeeny, J. Chem. Phys. 34, 399–401 (1961).CrossRefGoogle Scholar
  26. 26.
    H. M. McConnell, J. Chem. Phys. 28, 1188–1192 (1958).CrossRefGoogle Scholar
  27. 27.
    S. I. Weissman, J. Chem. Phys. 22, 1378–1379 (1954).CrossRefGoogle Scholar
  28. 28.
    H. M. McConnell, J. Chem. Phys. 24, 764–766 (1956).CrossRefGoogle Scholar
  29. 29.
    H. M. McConnell and D. B. Chesnut, J. Chem. Phys. 28, 107–117 (1958).CrossRefGoogle Scholar
  30. 30.
    H. M. McConnell, C. Heller, T. Cole, and R. M. Fessenden, J. Am. Chem. Soc. 82, 766–775 (1960).CrossRefGoogle Scholar
  31. 31.
    N. Hirota, C. A. Hutchison, Jr., and P. Palmer, J. Chem. Phys. 40, 3717–3725 (1964).CrossRefGoogle Scholar
  32. 32.
    A. M. Ponte Goncalves, Ph.D. thesis, University of Chicago, Chicago (1969).Google Scholar
  33. 33.
    R. H. Clarke and C. A. Hutchison, Jr., J. Chem. Phys. 54, 2962–2968 (1971).CrossRefGoogle Scholar
  34. 34.
    H. M. McConnell and J. Strathdee, Molec. Phys. 2, 129–138 (1959).CrossRefGoogle Scholar
  35. 35.
    B. J. Botter, D. C. Doetschman, J. Schmidt, and J. H. van der Waals, Molec. Phys. 30, 609–620 (1975).CrossRefGoogle Scholar
  36. 36.
    L. G. Rowan, E. L. Hahn, and W. B. Mims, Phys. Rev. 137, A61–A71 (1965).CrossRefGoogle Scholar
  37. 37.
    C. A. Hutchison, Jr., and G. A. Pearson, J. Chem. Phys. 43, 2545–2546 (1965).CrossRefGoogle Scholar
  38. 38.
    R. W. Brandon, G. L. Closs, C. E. Davoust, C. A. Hutchison, Jr., B. E. Kohler, and R. Silbey, J. Chem. Phys. 43, 2006–2016 (1965).CrossRefGoogle Scholar
  39. 39.
    C. A. Hutchison, Jr., and B. E. Kohler, J. Chem. Phys. 51, 3327–3335 (1969).CrossRefGoogle Scholar
  40. 40.
    C. A. Hutchison, Jr., Pure Appl. Chem. 27, 327–360 (1971).CrossRefGoogle Scholar
  41. 41.
    D. C. Doetschman and C. A. Hutchison, Jr., J. Chem. Phys. 56, 3964–3982 (1972).CrossRefGoogle Scholar
  42. 42.
    R. J. M. Anderson and B. E. Kohler, J. Chem. Phys. 65, 2451–2459 (1976).CrossRefGoogle Scholar
  43. 43.
    P. Ehret, G. Jesse, and H. C. Wolf, Z. Naturforsch. 23a, 195–196 (1968).Google Scholar
  44. 44.
    P. Ehret and H. C. Wolf, Z. Naturforsch. 23a, 1740–1746 (1968).Google Scholar
  45. 45.
    A. D. McLachlan, Molec. Phys. 5, 51–62 (1962).CrossRefGoogle Scholar
  46. 46.
    M. S. de Groot and J. H. van der Waals, Molec. Phys. 6, 545–562 (1963).CrossRefGoogle Scholar
  47. 47.
    J. H. van der Waals, A. M. D. Berghuis, and M. S. de Groot, Molec. Phys. 13, 301–321 (1967).CrossRefGoogle Scholar
  48. 48.
    C. A. Hutchison, Jr., and V. H. McCann, J. Chem. Phys. 61, 820–832 (1974).CrossRefGoogle Scholar
  49. 49.
    P.-O. Löwdin, Phys. Rev. 90, 120–125 (1953).CrossRefGoogle Scholar
  50. 50.
    R. M. Hochstrasser, R. D. McAlpine, and J. D. Whiteman, J. Chem. Phys. 58, 5078–5088 (1973).CrossRefGoogle Scholar
  51. 51.
    P. S. Friedman, R. Kopelman, and P. N. Prasad, Chem. Phys. Lett. 24, 15–17 (1974).CrossRefGoogle Scholar
  52. 52.
    R. M. Hochstrasser, G. W. Scott, A. H. Zewail, and H. Fuess, Chem. Phys. 11, 273–279 (1975).CrossRefGoogle Scholar
  53. 53.
    C. A. Hutchison, Jr., and M. D. Kemple, to be published.Google Scholar
  54. 54.
    H. Suzuki, Electronic Absorption Spectra and Geometry of Organic Molecules, Chapter 12, Academic Press, New York (1967).Google Scholar
  55. 55.
    V. Zimmerman, M. Schwoerer, and H. C. Wolf, Chem. Phys. Lett. 31, 401–405 (1975).CrossRefGoogle Scholar
  56. 56.
    V. Zimmerman, H. C. Wolf, and M. Schwoerer, Chem. Phys. Lett. 31, 406–409 (1975).CrossRefGoogle Scholar
  57. 57.
    C. A. Hutchison, Jr., and J. S. King, Jr., J. Chem. Phys. 58, 392–393 (1973).CrossRefGoogle Scholar
  58. 58.
    M. Schwoerer and H. C. Wolf, in The Triplet State (A. B. Zahlen, ed.), pp. 133–140, Cambridge University Press, Cambridge, England (1967).Google Scholar
  59. 59.
    M. Schwoerer and H. C. Wolf, Molec. Cryst. 3, 177–213 (1967).CrossRefGoogle Scholar
  60. 60.
    B. J. Botter, C. J. Nonhof, J. Schmidt, and J. H. van der Waals, Chem. Phys. Lett. 43, 210–216 (1976).CrossRefGoogle Scholar
  61. 61.
    H. Sternlicht and H. M. McConnell, J. Chem. Phys. 35, 1793–1800 (1961).CrossRefGoogle Scholar
  62. 62.
    H. Blok, J. A. Kooter, and J. Schmidt, Chem. Phys. Lett. 30, 160–164 (1975).CrossRefGoogle Scholar
  63. 63.
    N. S. Dalai, D. Haarer, J. Bargon, and H. Möhwald, Chem. Phys. Lett. 40, 326–330 (1976).CrossRefGoogle Scholar
  64. 64.
    A. L. Kwiram, in Magnetic Resonance, MTP International Review of Science, Physical Chemistry Series 1, Vol. 4 (C. A. McDowell, ed.), pp. 271–316, Butterworths, London (1972).Google Scholar
  65. 65.
    I. Y. Chan, J. Schmidt, and J. H. van der Waals, Chem. Phys. Lett. 4, 269–273 (1969).CrossRefGoogle Scholar
  66. 66.
    C. B. Harris, D. S. Tinti, M. A. El-Sayed, and A. H. Maki, Chem. Phys. Lett. 4, 409–412 (1969).CrossRefGoogle Scholar
  67. 67.
    M. J. Buckley, C. B. Harris, and A. H. Maki, Chem. Phys. Lett. 4, 591–595 (1970).CrossRefGoogle Scholar
  68. 68.
    I. Y. Chan and J. H. van der Waals, Chem. Phys. Lett. 20, 157–162 (1973).CrossRefGoogle Scholar
  69. 69.
    M. J. Buckley and C. B. Harris, Chem. Phys. Lett. 5, 205–213 (1970).CrossRefGoogle Scholar
  70. 70.
    M. J. Buckley and C. B. Harris, J. Chem. Phys. 56, 137–146 (1972).CrossRefGoogle Scholar
  71. 71.
    G. Kothandaraman, D. W. Pratt, and D. S. Tinti, J. Chem. Phys. 63, 3337–3348 (1975).CrossRefGoogle Scholar
  72. 72.
    L. W. Dennis and D. S. Tinti, J. Chem. Phys. 62, 2015–2025 (1975).CrossRefGoogle Scholar
  73. 73.
    C. A. Hutchison, Jr., J. V. Nicholas, and G. W. Scott, J. Chem. Phys. 53, 1906–1917 (1970).CrossRefGoogle Scholar
  74. 74.
    C. A. Hutchison, Jr., and G. W. Scott, J. Chem. Phys. 61, 2240–2249 (1974).CrossRefGoogle Scholar
  75. 75.
    R. M. Hochstrasser, G. W. Scott, and A. H. Zewail, Molec. Phys. 36, 475–499 (1978).CrossRefGoogle Scholar
  76. 76.
    H. Schuch and C. B. Harris, in Magnetic Resonance and Related Phenomena, Proc. 18 Congr. Ampere (P. S. Allen, E. R. Andrew, and C. A. Bates, eds.), Vol. 1, pp. 223–224, North-Holland, Amsterdam (1975).Google Scholar
  77. 77.
    H. Schuch and C. B. Harris, Z. Naturforsch 30a, 361–371 (1975).Google Scholar
  78. 78.
    C. B. Harris, R. L. Schlupp, and H. Schuch, Phys. Rev. Lett. 30, 1019–1022 (1973).CrossRefGoogle Scholar
  79. 79.
    S. R. Hartman and E. L. Hahn, Phys. Rev. 128, 2042–2053 (1968).CrossRefGoogle Scholar
  80. 80.
    G. Feher, Phys. Rev. 105, 1122–1123 (1957).CrossRefGoogle Scholar
  81. 81.
    H. Seidel, Phys. Lett. 7, 27–29 (1963).CrossRefGoogle Scholar
  82. 82.
    H. Seidel, M. Schwoerer, and M. Schmid, Z. Phys. 182, 398–426 (1965).CrossRefGoogle Scholar
  83. 83.
    H. Maffeo and A. Hervé, Phys. Rev. B 13, 1940–1959 (1976).CrossRefGoogle Scholar
  84. 84.
    M. J. Marrone, F. W. Patten, and M. N. Kabler, Phys. Rev. Lett. 31, 467–471 (1973).CrossRefGoogle Scholar
  85. 85.
    A. Wasiela, G. Ascarelli, and Y. Merle d’Aubigne, Phys. Rev. Lett. 31, 993–996 (1973).CrossRefGoogle Scholar
  86. 86.
    P. R. Locher and S. Geschwind, Phys. Rev. Lett. 11, 333–336 (1963).CrossRefGoogle Scholar
  87. 87.
    S. Geschwind, in Hyperfine Interactions (A. J. Freeman and R. B. Frankel, eds.), Chapter 6, Academic Press, New York (1967).Google Scholar
  88. 88.
    W. E. Blumberg, J. Eisinger, and S. Geschwind, Phys. Rev. 130, 900–909 (1963).CrossRefGoogle Scholar
  89. 89.
    R. J. Cook, in Magnetic Resonance and Radiofrequency Spectroscopy, Proceedings of the 15th Colloque AMPERE (P. Averbuch, ed.), pp. 269–273, North-Holland, Amsterdam (1969).Google Scholar
  90. 90.
    M. Iwasaki, in Magnetic Resonance, MTP International Review of Science, Physical Chemistry Series 1, Vol. 4 (C. A. McDowell, ed.), pp. 317–346, Butterworths, London (1972).Google Scholar
  91. 91.
    K. Nunome, K. Toriyama, and M. Iwasaki, J. Chem. Phys. 62, 2927–2933 (1975).CrossRefGoogle Scholar
  92. 92.
    W. G. van Dorp, M. Soma, J. A. Kooter, and J. H. van der Waals, Molec. Phys. 28, 1551–1568 (1974).CrossRefGoogle Scholar
  93. 93.
    R. H. Clarke and R. H. Hofeldt, J. Chem. Phys. 61, 4582–4587 (1974).CrossRefGoogle Scholar

Note 1 Added in Proof

  1. H. Dörner and D. Schmid, Chem. Phys. Lett. 61, 171–174 (1979).CrossRefGoogle Scholar

Note 2 Added in Proof

  1. P. F. Brode III and D. W. Pratt, Chem. Phys. Lett. 54, 591–593 (1978).CrossRefGoogle Scholar
  2. P. F. Brode III and D. W. Pratt, Semicond. Insul. 4, 277–293 (1978).Google Scholar
  3. K. Itoh, T. Zentoh, and H. Kawakami, J. Lumin. 12–13, 397–402 (1976).CrossRefGoogle Scholar
  4. J. H. Lichtenbelt and D. A. Wiersma, Chem. Phys. 34, 47–54 (1978).CrossRefGoogle Scholar
  5. C. von Borczyskowski, M. Plato, K.-P. Dinse, and K. Möbius, Chem. Phys. 35, 355–366 (1978).CrossRefGoogle Scholar
  6. J. H. Lichtenbelt, D. A. Wiersma, H. T. Jonkman, and G. A. van der Velde Chem. Phys. 22, 297–305 (1977).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1979

Authors and Affiliations

  • Marvin D. Kemple
    • 1
  1. 1.National Bureau of StandardsUSA

Personalised recommendations