Skip to main content

ENDOR of Triplet State Systems in Solids

  • Chapter
Book cover Multiple Electron Resonance Spectroscopy

Abstract

Physical systems possessing one unit of effective electron spin angular momentum have been the subject of extensive study. Such triplet state systems may be excited- and ground-state molecules, pairs of free radical molecules, transition element ions, pairs of ions, and defects in solids. The molecules may range from relatively simple diatomic species to multiatom biological complexes. Detailed magnetic resonance measurements can yield information concerning wave functions, geometry and structure, lifetime of excited states, interactions with the environment, and other properties of these triplet state entities. We will discuss here the particular usefulness of electron nuclear double resonance(1) (endor)—nuclear magnetic resonance transitions detected by means of electron paramagnetic resonance (epr). Emphasis will be placed on triplet species in solids.

NRC/NBS Postdoctoral Research Associate, 1976–1977. An official contribution of the National Bureau of Standards; not subject to copyright.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Feher, Phys. Rev. 103, 834–835 (1956).

    Article  CAS  Google Scholar 

  2. G. N. Lewis, D. Lipkin, and T. T. Magel, J. Am. Chem. Soc. 63, 3005–3018 (1941).

    Article  CAS  Google Scholar 

  3. G. N. Lewis and M. Kasha, J. Am. Chem. Soc. 66, 2100–2116 (1944).

    Article  CAS  Google Scholar 

  4. G. N. Lewis and M. Kasha, J. Am. Chem. Soc. 67, 994–1003 (1945).

    Article  CAS  Google Scholar 

  5. A. Terenin, Acta Physiochim. URSS 18, 210–241 (1943).

    CAS  Google Scholar 

  6. C. A. Hutchison, Jr., and B. W. Mangum, J. Chem. Phys. 29, 952–953 (1958).

    Article  CAS  Google Scholar 

  7. C. A. Hutchison, Jr., and B. W. Mangum, J. Chem. Phys. 34, 908–922 (1961).

    Article  CAS  Google Scholar 

  8. J. H. van der Waals and M. S. de Groot, Molec. Phys. 2, 333–340 (1959).

    Article  Google Scholar 

  9. J. H. van der Waals and M. S. de Groot, Molec. Phys. 3, 190–200 (1960).

    Article  Google Scholar 

  10. W. A. Yager, E. Wasserman, and R. M. R. Cramer, J. Chem. Phys. 37, 1148–1149 (1962).

    Article  CAS  Google Scholar 

  11. E. Fermi, Z. Phys. 60, 320–333 (1930).

    Article  CAS  Google Scholar 

  12. A. Abragam and B. Bleaney, Electron Paramagnetic Resonance of Transition Ions, Clarendon Press, Oxford (1970).

    Google Scholar 

  13. A. W. Hornig and J. S. Hyde, Molec. Phys. 6, 33–41 (1963).

    Article  CAS  Google Scholar 

  14. R. M. Hochstrasser and T.-S. Lin, J. Chem. Phys. 49, 4929–4945 (1968).

    Article  CAS  Google Scholar 

  15. M. Iwasaki, K. Minakata, and K. Toriyama, J. Chem. Phys. 54, 3225–3226 (1971).

    Article  CAS  Google Scholar 

  16. K. Minakata and M. Iwasaki, Molec. Phys. 23, 1115–1131 (1972).

    Article  CAS  Google Scholar 

  17. D. S. Tinti, G. Kothandaraman, and C. B. Harris, J. Chem. Phys. 59, 190–193 (1973).

    Article  CAS  Google Scholar 

  18. G. Kothandaraman, H. J. Yue, and D. W. Pratt, J. Chem. Phys. 61, 2102–2111 (1974).

    Article  CAS  Google Scholar 

  19. C. A. Hutchison, Jr., and G. A. Pearson, J. Chem. Phys. 47, 520–533 (1967).

    Article  Google Scholar 

  20. A. M. Ponte Goncalves and C. A. Hutchison, Jr., J. Chem. Phys. 49, 4235–4236 (1968).

    Article  CAS  Google Scholar 

  21. H. C. Brenner, C. A. Hutchison, Jr., and M. D. Kemple, J. Chem. Phys. 60, 2180–2181 (1974).

    Article  CAS  Google Scholar 

  22. G. B. Robertson, Nature (London) 191, 593–594 (1961).

    Article  CAS  Google Scholar 

  23. J. Trotter, Acta Crystallog. 14, 1135–1140 (1961).

    Article  CAS  Google Scholar 

  24. A. Hargreaves and S. H. Rizvi, Acta Crystallog. 15, 365–373 (1962).

    Article  CAS  Google Scholar 

  25. R. McWeeny, J. Chem. Phys. 34, 399–401 (1961).

    Article  CAS  Google Scholar 

  26. H. M. McConnell, J. Chem. Phys. 28, 1188–1192 (1958).

    Article  CAS  Google Scholar 

  27. S. I. Weissman, J. Chem. Phys. 22, 1378–1379 (1954).

    Article  CAS  Google Scholar 

  28. H. M. McConnell, J. Chem. Phys. 24, 764–766 (1956).

    Article  CAS  Google Scholar 

  29. H. M. McConnell and D. B. Chesnut, J. Chem. Phys. 28, 107–117 (1958).

    Article  CAS  Google Scholar 

  30. H. M. McConnell, C. Heller, T. Cole, and R. M. Fessenden, J. Am. Chem. Soc. 82, 766–775 (1960).

    Article  CAS  Google Scholar 

  31. N. Hirota, C. A. Hutchison, Jr., and P. Palmer, J. Chem. Phys. 40, 3717–3725 (1964).

    Article  CAS  Google Scholar 

  32. A. M. Ponte Goncalves, Ph.D. thesis, University of Chicago, Chicago (1969).

    Google Scholar 

  33. R. H. Clarke and C. A. Hutchison, Jr., J. Chem. Phys. 54, 2962–2968 (1971).

    Article  CAS  Google Scholar 

  34. H. M. McConnell and J. Strathdee, Molec. Phys. 2, 129–138 (1959).

    Article  CAS  Google Scholar 

  35. B. J. Botter, D. C. Doetschman, J. Schmidt, and J. H. van der Waals, Molec. Phys. 30, 609–620 (1975).

    Article  CAS  Google Scholar 

  36. L. G. Rowan, E. L. Hahn, and W. B. Mims, Phys. Rev. 137, A61–A71 (1965).

    Article  Google Scholar 

  37. C. A. Hutchison, Jr., and G. A. Pearson, J. Chem. Phys. 43, 2545–2546 (1965).

    Article  CAS  Google Scholar 

  38. R. W. Brandon, G. L. Closs, C. E. Davoust, C. A. Hutchison, Jr., B. E. Kohler, and R. Silbey, J. Chem. Phys. 43, 2006–2016 (1965).

    Article  CAS  Google Scholar 

  39. C. A. Hutchison, Jr., and B. E. Kohler, J. Chem. Phys. 51, 3327–3335 (1969).

    Article  CAS  Google Scholar 

  40. C. A. Hutchison, Jr., Pure Appl. Chem. 27, 327–360 (1971).

    Article  CAS  Google Scholar 

  41. D. C. Doetschman and C. A. Hutchison, Jr., J. Chem. Phys. 56, 3964–3982 (1972).

    Article  CAS  Google Scholar 

  42. R. J. M. Anderson and B. E. Kohler, J. Chem. Phys. 65, 2451–2459 (1976).

    Article  CAS  Google Scholar 

  43. P. Ehret, G. Jesse, and H. C. Wolf, Z. Naturforsch. 23a, 195–196 (1968).

    Google Scholar 

  44. P. Ehret and H. C. Wolf, Z. Naturforsch. 23a, 1740–1746 (1968).

    Google Scholar 

  45. A. D. McLachlan, Molec. Phys. 5, 51–62 (1962).

    Article  CAS  Google Scholar 

  46. M. S. de Groot and J. H. van der Waals, Molec. Phys. 6, 545–562 (1963).

    Article  Google Scholar 

  47. J. H. van der Waals, A. M. D. Berghuis, and M. S. de Groot, Molec. Phys. 13, 301–321 (1967).

    Article  Google Scholar 

  48. C. A. Hutchison, Jr., and V. H. McCann, J. Chem. Phys. 61, 820–832 (1974).

    Article  CAS  Google Scholar 

  49. P.-O. Löwdin, Phys. Rev. 90, 120–125 (1953).

    Article  Google Scholar 

  50. R. M. Hochstrasser, R. D. McAlpine, and J. D. Whiteman, J. Chem. Phys. 58, 5078–5088 (1973).

    Article  CAS  Google Scholar 

  51. P. S. Friedman, R. Kopelman, and P. N. Prasad, Chem. Phys. Lett. 24, 15–17 (1974).

    Article  CAS  Google Scholar 

  52. R. M. Hochstrasser, G. W. Scott, A. H. Zewail, and H. Fuess, Chem. Phys. 11, 273–279 (1975).

    Article  CAS  Google Scholar 

  53. C. A. Hutchison, Jr., and M. D. Kemple, to be published.

    Google Scholar 

  54. H. Suzuki, Electronic Absorption Spectra and Geometry of Organic Molecules, Chapter 12, Academic Press, New York (1967).

    Google Scholar 

  55. V. Zimmerman, M. Schwoerer, and H. C. Wolf, Chem. Phys. Lett. 31, 401–405 (1975).

    Article  CAS  Google Scholar 

  56. V. Zimmerman, H. C. Wolf, and M. Schwoerer, Chem. Phys. Lett. 31, 406–409 (1975).

    Article  CAS  Google Scholar 

  57. C. A. Hutchison, Jr., and J. S. King, Jr., J. Chem. Phys. 58, 392–393 (1973).

    Article  CAS  Google Scholar 

  58. M. Schwoerer and H. C. Wolf, in The Triplet State (A. B. Zahlen, ed.), pp. 133–140, Cambridge University Press, Cambridge, England (1967).

    Google Scholar 

  59. M. Schwoerer and H. C. Wolf, Molec. Cryst. 3, 177–213 (1967).

    Article  CAS  Google Scholar 

  60. B. J. Botter, C. J. Nonhof, J. Schmidt, and J. H. van der Waals, Chem. Phys. Lett. 43, 210–216 (1976).

    Article  CAS  Google Scholar 

  61. H. Sternlicht and H. M. McConnell, J. Chem. Phys. 35, 1793–1800 (1961).

    Article  CAS  Google Scholar 

  62. H. Blok, J. A. Kooter, and J. Schmidt, Chem. Phys. Lett. 30, 160–164 (1975).

    Article  CAS  Google Scholar 

  63. N. S. Dalai, D. Haarer, J. Bargon, and H. Möhwald, Chem. Phys. Lett. 40, 326–330 (1976).

    Article  Google Scholar 

  64. A. L. Kwiram, in Magnetic Resonance, MTP International Review of Science, Physical Chemistry Series 1, Vol. 4 (C. A. McDowell, ed.), pp. 271–316, Butterworths, London (1972).

    Google Scholar 

  65. I. Y. Chan, J. Schmidt, and J. H. van der Waals, Chem. Phys. Lett. 4, 269–273 (1969).

    Article  CAS  Google Scholar 

  66. C. B. Harris, D. S. Tinti, M. A. El-Sayed, and A. H. Maki, Chem. Phys. Lett. 4, 409–412 (1969).

    Article  CAS  Google Scholar 

  67. M. J. Buckley, C. B. Harris, and A. H. Maki, Chem. Phys. Lett. 4, 591–595 (1970).

    Article  CAS  Google Scholar 

  68. I. Y. Chan and J. H. van der Waals, Chem. Phys. Lett. 20, 157–162 (1973).

    Article  CAS  Google Scholar 

  69. M. J. Buckley and C. B. Harris, Chem. Phys. Lett. 5, 205–213 (1970).

    Article  CAS  Google Scholar 

  70. M. J. Buckley and C. B. Harris, J. Chem. Phys. 56, 137–146 (1972).

    Article  CAS  Google Scholar 

  71. G. Kothandaraman, D. W. Pratt, and D. S. Tinti, J. Chem. Phys. 63, 3337–3348 (1975).

    Article  CAS  Google Scholar 

  72. L. W. Dennis and D. S. Tinti, J. Chem. Phys. 62, 2015–2025 (1975).

    Article  CAS  Google Scholar 

  73. C. A. Hutchison, Jr., J. V. Nicholas, and G. W. Scott, J. Chem. Phys. 53, 1906–1917 (1970).

    Article  CAS  Google Scholar 

  74. C. A. Hutchison, Jr., and G. W. Scott, J. Chem. Phys. 61, 2240–2249 (1974).

    Article  CAS  Google Scholar 

  75. R. M. Hochstrasser, G. W. Scott, and A. H. Zewail, Molec. Phys. 36, 475–499 (1978).

    Article  CAS  Google Scholar 

  76. H. Schuch and C. B. Harris, in Magnetic Resonance and Related Phenomena, Proc. 18 Congr. Ampere (P. S. Allen, E. R. Andrew, and C. A. Bates, eds.), Vol. 1, pp. 223–224, North-Holland, Amsterdam (1975).

    Google Scholar 

  77. H. Schuch and C. B. Harris, Z. Naturforsch 30a, 361–371 (1975).

    CAS  Google Scholar 

  78. C. B. Harris, R. L. Schlupp, and H. Schuch, Phys. Rev. Lett. 30, 1019–1022 (1973).

    Article  CAS  Google Scholar 

  79. S. R. Hartman and E. L. Hahn, Phys. Rev. 128, 2042–2053 (1968).

    Article  Google Scholar 

  80. G. Feher, Phys. Rev. 105, 1122–1123 (1957).

    Article  CAS  Google Scholar 

  81. H. Seidel, Phys. Lett. 7, 27–29 (1963).

    Article  CAS  Google Scholar 

  82. H. Seidel, M. Schwoerer, and M. Schmid, Z. Phys. 182, 398–426 (1965).

    Article  CAS  Google Scholar 

  83. H. Maffeo and A. Hervé, Phys. Rev. B 13, 1940–1959 (1976).

    Article  CAS  Google Scholar 

  84. M. J. Marrone, F. W. Patten, and M. N. Kabler, Phys. Rev. Lett. 31, 467–471 (1973).

    Article  CAS  Google Scholar 

  85. A. Wasiela, G. Ascarelli, and Y. Merle d’Aubigne, Phys. Rev. Lett. 31, 993–996 (1973).

    Article  CAS  Google Scholar 

  86. P. R. Locher and S. Geschwind, Phys. Rev. Lett. 11, 333–336 (1963).

    Article  CAS  Google Scholar 

  87. S. Geschwind, in Hyperfine Interactions (A. J. Freeman and R. B. Frankel, eds.), Chapter 6, Academic Press, New York (1967).

    Google Scholar 

  88. W. E. Blumberg, J. Eisinger, and S. Geschwind, Phys. Rev. 130, 900–909 (1963).

    Article  CAS  Google Scholar 

  89. R. J. Cook, in Magnetic Resonance and Radiofrequency Spectroscopy, Proceedings of the 15th Colloque AMPERE (P. Averbuch, ed.), pp. 269–273, North-Holland, Amsterdam (1969).

    Google Scholar 

  90. M. Iwasaki, in Magnetic Resonance, MTP International Review of Science, Physical Chemistry Series 1, Vol. 4 (C. A. McDowell, ed.), pp. 317–346, Butterworths, London (1972).

    Google Scholar 

  91. K. Nunome, K. Toriyama, and M. Iwasaki, J. Chem. Phys. 62, 2927–2933 (1975).

    Article  CAS  Google Scholar 

  92. W. G. van Dorp, M. Soma, J. A. Kooter, and J. H. van der Waals, Molec. Phys. 28, 1551–1568 (1974).

    Article  Google Scholar 

  93. R. H. Clarke and R. H. Hofeldt, J. Chem. Phys. 61, 4582–4587 (1974).

    Article  CAS  Google Scholar 

Note 1 Added in Proof

Note 2 Added in Proof

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1979 Plenum Press, New York

About this chapter

Cite this chapter

Kemple, M.D. (1979). ENDOR of Triplet State Systems in Solids. In: Dorio, M.M., Freed, J.H. (eds) Multiple Electron Resonance Spectroscopy. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-3441-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-3441-5_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-3443-9

  • Online ISBN: 978-1-4684-3441-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics