Polymer Studies

  • Martin M. Dorio


The physical and mechanical properties of solid polymers are dependent on the molecular motions as well as the inter- and intramolecular interactions. Several methods have been useful in the study of these motions: dielectric relaxation, dynamic mechanical relaxation(1) and nuclear magnetic resonance.(2) Epr has also been used, of course, to probe molecular motions. The method has seen applications in both biological systems(3) and in polymers.(4–7) The latter were for polymeric systems in solution or for solid polymers in the vicinity of their melting transitions. This has been due primarily to the limited sensitivity of the epr method in the slow-motion region. At these low temperatures, line-shape changes become small and subtle, thereby reducing the amount of information extractable from the spectra. Nevertheless, epr studies in the solid state region [i.e., correlation times (τ c ) less than 10−7 sec] have been carried out(8–11) on a few systems.


Matrix Signal Spin Packet Polymer Study Irradiate Polymer Polyvinyl Fluoride 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. G. McCrum, B. E. Read, and G. Williams, Anelastic and Dielectric Effects in Polymeric Solids, John Wiley and Sons, New York (1967).Google Scholar
  2. 2.
    I. Ya. Slovim and A. N. Luyubimov, The NMR of Polymers, Plenum Press, New York (1970).Google Scholar
  3. 3.
    C. L. Hamilton and H. M. McConnell, in Structural Chemistry and Molecular Biology (A. Rich and N. Davidson, eds.), Freeman, San Francisco (1968).Google Scholar
  4. 4.
    A. T. Bullock, G. C. Cameran, and P. M. Smith, J. Chem. Soc. Faraday Trans. II 70, 1202 (1974).CrossRefGoogle Scholar
  5. 5.
    P. Tormala, H. Lattila, and J. J. Lindberg, Polymer 14, 481 (1973).CrossRefGoogle Scholar
  6. 6.
    V. B. Stryukov, E. G. Rozantsev, A. I. Kashlinskii, N. G. Mat’tseva, and I. F. Tibanov, Dokl. Acad. Nauk. SSSR 190, 895 (1970).Google Scholar
  7. 7.
    Z. Veksli and W. G. Miller, Macromolecules 10, 1245 (1977).CrossRefGoogle Scholar
  8. 8.
    A. L. Buchachenro, A. L. Kovarskii, and A. M. Wasserman, in Advances in Polymer Science (Z. A. Rogovin, ed.), John Wiley and Sons, New York (1974), pp. 26–57.Google Scholar
  9. 9.
    A. M. Wasserman, T. A. Alexandrova, and A. L. Buchachenico, Eur. Polym. J. 12, 691 (1976).CrossRefGoogle Scholar
  10. 10.
    P. L. Kumler and R. F. Boyer, Macromolecules 9, 903 (1976).CrossRefGoogle Scholar
  11. 11.
    P. Tormala and J. J. Lindberg, in Structural Studies of Macromolecules by Spectroscopic Methods (K. J. Ivin, ed.), John Wiley and Sons, New York (1976).Google Scholar
  12. 12.
    E. Schneider, Nature 168, 645 (1951).CrossRefGoogle Scholar
  13. 13.
    D. Libby, Polymer 1, 212 (1960).CrossRefGoogle Scholar
  14. 14.
    B. Ranby and P. Cartensen, Adv. Chem. Ser. 66, 256 (1967).CrossRefGoogle Scholar
  15. 15.
    M. Dole, Radiation Chemistry of Macromolecules, Chapter 14, Vol. I, Academic Press, New York (1972).Google Scholar
  16. 16.
    N. Z. Searle, in Analytical Photochemistry and Photochemical Analysis (J. M. Fitzgerald, ed.), Marcel Dekker, New York (1971).Google Scholar
  17. 17.
    P. Ayscough and S. Munari, J. Polym. Sci. B4, 503 (1966).Google Scholar
  18. 18.
    A. Charlesby, D. Libby, and M. Ormerod, Proc. Roy. Soc. (London) A262, 207 (1961).Google Scholar
  19. 19.
    T. Fujimara, N. Hayakawa, and N. Tamura Repts. Prog. Polym. Phys. Japan 14, 557 (1971).Google Scholar
  20. 20.
    S. Ohnishi, S. Sugimoto, and I. Nitta, J. Chem. Phys. 39, 2647 (1963).CrossRefGoogle Scholar
  21. 21.
    R. W. Fessenden and R. H. Schuler, J. Chem. Phys. 39, 2147 (1963).CrossRefGoogle Scholar
  22. 22.
    J. S. Hyde, J. C. W. Chien, and J. H. Freed, J. Chem. Phys. 48, 4211 (1968).CrossRefGoogle Scholar
  23. 23.
    J. S. Hyde, “Electron-Electron Double Resonance,” Varian Reprint No. 256.Google Scholar
  24. 24.
    J. S. Hyde, L. D. Kispert, R. C. Sneed, and J. C. W. Chien, J. Chem. Phys. 48, 3824 (1968).CrossRefGoogle Scholar
  25. 25.
    M. C. R. Symons, Adv. Phys. Org. Chem. 1, 340 (1963); J. Chem. Soc, 1186 (1963).Google Scholar
  26. 26.
    J. C. W. Chien, unpublished results.Google Scholar
  27. 27.
    M. M. Dorio and J. C. W. Chien, unpublished results.Google Scholar
  28. 28a.
    M. M. Dorio and J. C. W. Chien, Macromolecules 8, 734 (1975).CrossRefGoogle Scholar
  29. 28b.
    M. M. Dorio, Ph.D. Dissertation, University of Massachusetts (1975).Google Scholar
  30. 29.
    M. M. Dorio and J. C. W. Chien, J. Mag. Res. 20, 114 (1975).Google Scholar
  31. 30.
    M. M. Dorio and J. C. W. Chien, J. Mag. Res. 21, 491 (1976).Google Scholar
  32. 31.
    M. M. Dorio and J. C. W. Chien, Polym. Preprints 17(2), 23 (1976).Google Scholar
  33. 32.
    H. W. H. Yang and J. C. W. Chien, Polym. Preprints 18(2), 149 (1977).Google Scholar
  34. 33.
    P. A. Stunzhas, V. B. Stryukov, V. A. Benderskii, and S. T. Kirillov, JETP Lett. 17(2), 461 (1973).Google Scholar
  35. 34.
    S. T. Kirillov, M. A. Kozhushner, and V. G. Stryukov, Sov. Phys. JETP 41(6), 1124 (1975).Google Scholar
  36. 35.
    S. T. Kirillov, M. A. Kozhushner, and V. B. Stryukov, Chem. Phys. 17, 243 (1976).CrossRefGoogle Scholar
  37. 36.
    S. T. Kirillov and A. V. Melnikov, Mol. Cryst. Liq. Cryst. 36, 217 (1976).CrossRefGoogle Scholar
  38. 37.
    S. T. Kirillov, V. B. Stryukov, Russ. J. Phys. Chem. 50(11), 1746 (1976).Google Scholar
  39. 38.
    E. Stetter, H. M. Vieth, and K. H. Hausser, J. Mag. Res. 23, 493 (1976).Google Scholar
  40. 39.
    L. R. Dalton, L. A. Dalton, N. Galloway, and J. S. Hyde, in Fifth Southeastern Magnetic Resonance Conference, Oct. 11–12, 1973, Tuscaloosa, Alabama.Google Scholar
  41. 40.
    B. H. Robinson, J. L. Monge, L. A. Dalton, L. R. Dalton, and A. L. Kwirom, Chem. Phys. Lett. 28, 169 (1974).CrossRefGoogle Scholar
  42. 41.
    J. S. Hyde, M. D. Smigel, L. R. Dalton, and L. A. Dalton, J. Chem. Phys. 62, 1655 (1975).CrossRefGoogle Scholar
  43. 42.
    M. D. Smigel, L. R. Dalton, J. S. Hyde, and L. A. Dalton, Proc. Nat. Acad. Sci. (USA) 71, 1925 (1974).CrossRefGoogle Scholar
  44. 43.
    J. S. Hyde, G. H. Rist, and L. E. Goren-Eriksson, J. Phys. Chem. 72, 4269 (1968).CrossRefGoogle Scholar
  45. 44.
    D. S. Leniart, J. S. Hyde, and J. C. Vedrine, J. Phys. Chem. 76, 2079 (1972).CrossRefGoogle Scholar
  46. 45.
    J. N. Helbert, B. E. Wagner, E. H. Poindexter, and L. Kevan, J. Polym. Sci. Phys. 13, 825 (1975).CrossRefGoogle Scholar
  47. 46.
    H. A. Flocke, Kolloid Z. 180, 118 (1962).CrossRefGoogle Scholar
  48. 47.
    E. Passaglia and G. M. Martin, J. Res. Nat. Bur. Standards 68, 519 (1964).Google Scholar
  49. 48.
    G. Natta, F. Damesso, and G. Moraglio, J. Polym. Sci. 25, 119 (1957).CrossRefGoogle Scholar
  50. 49.
    E. N. da C. Andrade, Nature 125, 309, 582 (1930).CrossRefGoogle Scholar
  51. 50.
    A. J. Batchinski, Z. Phys. Chem. 84, 643 (1913).Google Scholar
  52. 51.
    R. C. McCalley, E. J. Shimshick, and H. M. McConnell, Chem. Phys. Lett. 13, 115 (1972).CrossRefGoogle Scholar
  53. 52.
    H. W. H. Yang and J. C. W. Chien, Polym. Preprints 18(2), 149 (1977).Google Scholar

Copyright information

© Plenum Press, New York 1979

Authors and Affiliations

  • Martin M. Dorio
    • 1
  1. 1.Diamond Shamrock CorporationT. R. Evans Research CenterPainesvilleUSA

Personalised recommendations