Skip to main content

Abstract

It would be difficult to mention an area of research that has more fundamental implications for mankind than does radiation biophysics. Mutagenesis, carcinogenesis, and cancer therapy all fall within the purview of radiation biophysics. These radiobiological phenomena are but manifestations of radiation effects occurring at the molecular level. The main objective of radiation biophysics is to explain the biological effects of radiation by discovering and interpreting the molecular effects. Numerous chemical and physical techniques have contributed to our understanding of the molecular effects of radiation; they including esr spectroscopy, mass spectroscopy, chromatography, autoradiography, and pulse radiolysis, to name but a few. Our purpose in this chapter is to describe the contributions of another technique, namely endor, that has only recently been deployed in radiation research. Our discussion of radiation biophysics will be highly selective, treating only those aspects of the subject where endor has had notable impact.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. H. Dibdin, Trans. Faraday Soc. 63, 2098–2111 (1967).

    Article  CAS  Google Scholar 

  2. J. A. Brivati, M. C. R. Symons, D. J. A. Tinling, H. W. Wardale, and P. O. Williams, Trans. Faraday Soc. 63, 2112–2116 (1967).

    Article  CAS  Google Scholar 

  3. H. C. Box, E. E. Budzinski, K. T. Lilga, and H. G. Freund, J. Chem. Phys. 53, 1059–1065 (1970).

    Article  CAS  Google Scholar 

  4. I. Johansen and P. Howard-Flanders, Radiat. Res. 24, 184–200 (1965).

    Article  CAS  Google Scholar 

  5. P. V. Hariharan and P. A. Cerutti, J. Mol. Biol. 66, 65–81 (1972).

    Article  CAS  Google Scholar 

  6. F. Q. Ngo, E. E. Budzinski, and H. C. Box, J. Chem. Phys. 60, 3373–3377 (1974).

    Article  Google Scholar 

  7. H. A. Helms, Jr., I. Suzuki, and I. Miyagawa, J. Chem. Phys. 59, 5055–5062 (1973).

    Article  CAS  Google Scholar 

  8. H. Muto and M. Iwasaki, J. Chem. Phys. 59, 4821–4829 (1973).

    Article  CAS  Google Scholar 

  9. M. Iwasaki and H. Muto, J. Chem. Phys. 61, 5215–5320 (1974).

    Google Scholar 

  10. H. C. Box, E. E. Budzinski, and H. G. Freund, J. Chem. Phys. 61, 2222–2226 (1974).

    Article  CAS  Google Scholar 

  11. J. Sinclair and P. Codella, J. Chem. Phys. 59, 1569–1576 (1972).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1979 Plenum Press, New York

About this chapter

Cite this chapter

Box, H.C. (1979). Radiation Biophysics. In: Dorio, M.M., Freed, J.H. (eds) Multiple Electron Resonance Spectroscopy. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-3441-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-3441-5_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-3443-9

  • Online ISBN: 978-1-4684-3441-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics