Effect of Opiates on Neuroendocrine Function Plasma Cortisol, Growth Hormone, and Thyrotropin

  • James Ellingboe
  • Steven M. Mirin
  • Roger E. Meyer
  • Jack H. Mendelson


In the mammalian brain the hypothalamus serves as a central switchboard in the integration and modulation of incoming messages from higher brain areas and peripheral organs. Signals from the hypothalamus itself are mediated through the synthesis and release of small peptides, which appear to possess behavioral as well as physiological activity. These hypothalamic releasing factors modulate pituitary function and thereby also affect peripheral endocrine activities, including adrenocortical and gonadal steroidogenesis. Narcotic drugs have long been known to interfere with normal neuroendocrine function, but only recently have experimental methods permitted critical investigations with human subjects.


Growth Hormone Plasma Cortisol Opiate Withdrawal Narcotic Drug Neuroendocrine Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sloan, J. W. Corticosteroid hormones. In: Narcotic Drugs, Biochemical Pharmacology (D. H. Clouet, ed.). New York: Plenum Press, 1971, pp. 262–282.Google Scholar
  2. 2.
    Eisenman, A. J., Fraser, H. F., and Brooks, J. W. Urinary excretion and plasma levels of 17-hydroxycorticosteroids during a cycle of addiction to morphine. J. Pharmacol. Exp. Ther. 132:226–231, 1961.PubMedGoogle Scholar
  3. 3.
    McDonald, R. K., Evans, F. T., Weise, V. K., and Patrick, R. W. Effect of morphine and nalorphine on plasma hydrocortisone levels in man. J. Pharmacol. Exp. Ther. 125:241–247, 1959.PubMedGoogle Scholar
  4. 4.
    George, J. M., Reier, C. E., Lanese, R. R., and Rower, J. M. Morphine anesthesia blocks Cortisol and growth hormone response to surgical stress in humans. J. Clin. Endocrinol. Metab. 38:736–741, 1974.PubMedCrossRefGoogle Scholar
  5. 5.
    Eisenman, A. J., Fraser, H. F., Sloan, J. W., and Isbell, H. Urinary 17-ketosteroid excretion during a cycle of addiction to morphine. J. Pharmacol. Exp. Ther. 124:305–311, 1958.PubMedGoogle Scholar
  6. 6.
    Eisenman, A. J., Sloan, J. W., Martin, W. R., Jasinski, D. R., and Brooks, J. W. Catecholamine and 17-hydroxycorticosteroid excretion during a cycle of morphine dependence in man. J. Psychiatr. Res. 7:19–28, 1969.PubMedCrossRefGoogle Scholar
  7. 7.
    Cushman, P., Bordier, B., and Hilton, J. G. Hypothalamic-pituitary-adrenal axis in methadone-treated heroin addicts. J. Clin. Endrocrinol. Metab. 30:24–29, 1970.CrossRefGoogle Scholar
  8. 8.
    Renault, P. F., Shuster C. R., Heinrich, R. L. and van der Kolk, B. Altered plasma Cortisol response in patients on methadone maintenance. Clin. Pharmacol. Ther. 13:269–273, 1972.PubMedGoogle Scholar
  9. 9.
    Kokka, N., Garcia, J. F., George, R., and Elliott, H. W. Growth hormone and ACTH secretion: Evidence for an inverse relationship in rats. Endocrinology 90:735–743, 1972.PubMedCrossRefGoogle Scholar
  10. 10.
    Martin, J. B., Audet, A., and Saunders, A. Effects of somatostatin and hypothalamic ventromedial lesions on GH release induced by morphine. Endocrinology 96:839–847, 1975.PubMedCrossRefGoogle Scholar
  11. 11.
    George, R., and Kokka, N. The effects of narcotics on growth hormone, ACTH and TSH secretion. In: Tissue Responses to Addictive Drugs (D. H. Ford and D. H. Clouet, eds.). Holliswood, New York: Spectrum Publications, 1976, pp. 527–540.Google Scholar
  12. 12.
    Kokka, N., Garcia, J. F., and Elliott, H. W. Effects of acute and chronic administration of narcotic analgesics on growth hormone and corticotrophin (ACTH) secretion in rats. Prog. Brain Res. 39:347–358, 1973.PubMedCrossRefGoogle Scholar
  13. 13.
    Kokka, N., and George, R. Effects of narcotic analgesics, anesthetics, and hypothalamic lesions on growth hormone and adrenocorticotrophic secretion in rats. In: Narcotics and the Hypothalamus (E. Zimmerman, and R. George, eds.). New York: Raven Press, 1974, pp. 137–157.Google Scholar
  14. 14.
    Dupont, A., Cusan, L., Garon, M., Labrie, F., and Li, C. H. β- Endorphin: Stimulation of growth hormone release in vivo. Proc. Natl. Acad. Sci. U.S.A. 74:358–359, 1977.PubMedCrossRefGoogle Scholar
  15. 15.
    Rivier, C., Vale, W., Ling, N., Brown, M., and Guillemin, R. Stimulation in vivo of the secretion of prolactin and growth hormone by β -endorphin. Endocrinology 100:238–241, 1977.PubMedCrossRefGoogle Scholar
  16. 16.
    Cusan, L., Dupont, A., Kledzik, G. S., Labrie, F., Coy, D. H., and Schally, A. V. Potent prolactin and growth hormone releasing activity of more analogues of Met-enkephalin. Nature 268:544–547, 1977.PubMedCrossRefGoogle Scholar
  17. 17.
    Guidotti, A., and Grandison, L. Participation of Endorphins in the Regulation of Pituitary Function. Presented at the annual meeting of the American College of Neuro-psychopharmacology, Puerto Rico, December 1977.Google Scholar
  18. 18.
    Tolis, G., Hickey, J., and Guyda, H. Effects of morphine on serum growth hormone, Cortisol, prolactin and thyroid stimulating hormone in man. J. Clin. Endocrinol. Metab. 41:797–800, 1975.PubMedCrossRefGoogle Scholar
  19. 19.
    George, R. Hypothalamus: Anterior pituitary gland. In: Narcotic Drugs, Biochemical Pharmacology (D. H. Clouet, ed.). New York: Plenum Press, 1971, pp. 283–299.Google Scholar
  20. 20.
    George, R. Effects of narcotic analgesics on hypothalamo-pituitary-thyroid function. Prog. Brain Res. 39:339–345, 1973.PubMedCrossRefGoogle Scholar
  21. 21.
    Van Vunakis, H., Wasserman, E., and Levine, L. Specificities of antibodies to morphine. J. Pharmacol. Exp. Ther. 180:514–521, 1972.PubMedGoogle Scholar
  22. 22.
    Niswender, G. D., Reichert, L. E., Midgley, A. R., and Nalbandov, A. V. Radioimmunoassay for bovine and ovine luteinizing hormone. Endocrinology 84:1166–1173, 1969.PubMedCrossRefGoogle Scholar
  23. 23.
    Murphy, B. E. P. Some studies of the protein-binding of steroids and their application to the routine micro and ultramicro measurement of various steroids in body fluids by competitive protein-binding radioassay. J. Clin. Endocrinol. Metab. 27:973–990, 1967.PubMedCrossRefGoogle Scholar
  24. 24.
    Mendelson, J. H., Meyer, R. E., Ellingboe, J., Mirin, S. M., and McDougle, M. Effects of heroin and methadone on plasma Cortisol and testosterone. J. Pharmacol. Exp. Ther. 195:296–302, 1975.PubMedGoogle Scholar
  25. 25.
    Spector, S., and Vesell, E. S. Disposition of morphine in man. Science 174:421–422, 1971.PubMedCrossRefGoogle Scholar
  26. 26.
    Briggs, F. N., and Munson, P. L. Studies of the mechanism of stimulation of ACTH secretion with the aid of morphine as a blocking agent. Endocrinology 57:205–219, 1955.PubMedCrossRefGoogle Scholar
  27. 27.
    Munson, P. L. Effects of morphine and related drugs on the corticotrophin (ACTH)-stress reaction. Prog. Brain Res. 39:361–372, 1973.PubMedCrossRefGoogle Scholar
  28. 28.
    George, R., and Way, E. L. Studies on the mechanism of pituitary-adrenal activation by morphine. Br. J. Pharmacol. Chemother. 10:260–264, 1955.PubMedGoogle Scholar
  29. 29.
    George, R., and Way, E. L. The role of the hypothalamus in pituitary-adrenal activation and antidiuresis by morphine. J. Pharmacol. Exp. Ther. 125:111–115, 1959.PubMedGoogle Scholar
  30. 30.
    Paroli, E., and Melchiorri, P. Urinary excretion of hydroxy steroids, 17-ketosteroids and aldosterone in rats during a cycle of treatment with morphine. Biochem. Pharmacol. 6:1–17, 1961.PubMedCrossRefGoogle Scholar
  31. 31.
    Paroli, E., and Melchiorri, P. Inhibitory effect of morphine on metabolism of adrenal and testicular steroids. Biochem. Pharmacol. 6:18–20, 1961.PubMedCrossRefGoogle Scholar
  32. 32.
    Nakao, T., Hiraga, K., Inaba, M., and Urata, Y. Influence of morphine on corticoid production. In: Steroid Dynamics (G. Pincus, T. Nakao, and J. F. Tait, eds.). New York: Academic Press, 1966, pp. 179–216.Google Scholar
  33. 33.
    Harrington, C. A., and Farmer, R. W. Antagonistic effect of methadone on steroidogenesis and the adenylate cyclase system in isolated rat adrenocortical cells. Biochem. Biophys.Res. Commun. 60:597–604, 1974.PubMedCrossRefGoogle Scholar
  34. 34.
    Farmer, R. W., and Merrill, D. K. Effects of methadone on steroid biosynthesis in rat adrenocortical cells. Biochem. Pharmacol. 23:2449–2452, 1974.PubMedCrossRefGoogle Scholar
  35. 35.
    Lotti, V J., Kokka, N., and George, R. Pituitary-adrenal activation following in-trahypothalamic microinjection of morphine. Neuroendocrinology 4:326–332, 1969.PubMedCrossRefGoogle Scholar
  36. 36.
    van Ree, J. M., Versteeg, D. H. G., Spaapen-Kok, W. B., and de Wied, D. Effects of morphine on hypothalamic noradrenaline and on pituitary-adrenal activity in rats. Neuroendocrinology 22:305–317, 1976.PubMedCrossRefGoogle Scholar
  37. 37.
    Hodges, J. R. The effect of cortisone acetate on the secretion of adrenocorticotropic hormone by the adenohypophysis. J. Endocrinol. 10:173–178, 1954.PubMedCrossRefGoogle Scholar
  38. 38.
    Ney, R. L., Shimizu, N., Nicholson, W. E., Island, D. P., and Liddle, G. W Correlation of plasma ACTH concentration with adrenocortical response in normal human subjects, surgical patients, and patients with. Cushing’s disease. J. Clin. Invest. 42:1669–1677, 1963.PubMedCrossRefGoogle Scholar
  39. 39.
    Klee, W. A. Interactions of opiate receptors with adenylate cyclase. In: Cell Membrane Receptors for Viruses, Antigens and Antibodies, Polypeptide Hormones, and Small Molecules (R. F. Beers, Jr., and E. G. Bassett, eds.). New York: Raven Press, 1976, pp. 451–466.Google Scholar
  40. 40.
    Goldstein, A., Cox, B. M., Klee, W. A., and Nirenberg, M. Endorphin from pituitary inhibits cyclic AMP formation in homogenates of neuroblastoma x glioma hybrid cells. Nature 265:362–363, 1977.PubMedCrossRefGoogle Scholar
  41. 41.
    Peng, T. C., Six, K. M., and Munson, P. L. Effect of prostaglandin E1 on the hypothalamo-hypophyseal-adrenocortical axis in rats. Endocrinology 86: 202–206, 1970.PubMedCrossRefGoogle Scholar
  42. 42.
    Cushman, P., Jr. Growth hormone in narcotic addiction. J. Clin. Endocrinol. Me tab. 35:352–358, 1972.CrossRefGoogle Scholar
  43. 43.
    Olds, J. Hypothalamic substrates of reward. Physiol. Rev. 42:554–604, 1962.PubMedGoogle Scholar
  44. 44.
    Amit, Z., Corcoran, M. E., Amir, S., and Urca, G. Ventral hypothalamic lesions block the consumption of morphine in rats. Life Sci. 13:805–816, 1973.PubMedCrossRefGoogle Scholar
  45. 45.
    Pozuelo, J., and Kerr, F. W. Suppression of craving and other signs of dependence in morphine addicted monkeys by administration of alpha-methyl-paratyrosine. Mayo Clinic Proc. 47:621–628, 1972.Google Scholar
  46. 46.
    Stein, L., and Wise, D. C. Release of norepinephrine from hypothalamus and amygdala by rewarding medial forebrain bundle stimulation and amphetamine. J. Comp. Physiol. Psychol. 61:189–198, 1969.CrossRefGoogle Scholar
  47. 47.
    German, D. C., and Bowden, D. M. Catecholamine systems as the neural substrate for intracranial self-stimulation: A hypothesis. Brain Res. 73:381–419, 1974.PubMedCrossRefGoogle Scholar
  48. 48.
    de Wied, D., van Ree, J. M., and de Jong, W Narcotic analgesics and the neuroendocrine control of anterior pituitary function. In: Narcotics and the Hypothalamus (E. Zimmerman, and R. George, eds.). New York: Raven Press, 1974, pp. 251–264.Google Scholar

Copyright information

© Plenum Publishing Corporation 1979

Authors and Affiliations

  • James Ellingboe
  • Steven M. Mirin
  • Roger E. Meyer
  • Jack H. Mendelson

There are no affiliations available

Personalised recommendations