The Effects of Unblocked Heroin upon Catecholamine Metabolism Preliminary Findings

  • Roger E. Meyer
  • Joseph J. Schildkraut
  • Steven M. Mirin
  • Paul J. Orsulak


The effects of morphine upon catecholamine metabolism in animals and man have been explored by a number of investigators(1,2) since the work of Vogt,(3) Gunne,(4,5) and Maynert.(6) The relationship between changes in catecholamine metabolism and the addictive properties of opioid drugs can only be conjectured. While two recent reviews(7,8) cast doubt on the hypothesis that changes in norepinephrine metabolism can explain tolerance and physical dependence, there is persistent indirect evidence linking opioid reinforcement with changes in noradrenergic metabolism secondary to drug administration. A number of self-administration studies have demonstrated that alphamethyltyrosine (AMT), an inhibitor of catecholamine biosynthesis, blocks morphine reinforcement(9,10,11) Moreover, Nelsen(12) has observed an increase in electrical activity in the median forebrain bundle (MFB) in rats given single doses of morphine. This is a norepinephrine-rich area associated with positive reinforcement in self-stimulation studies.(13,14) Finally, Davis and Smith(15) found that a known dopamine blocking agent (haloperidol) will not block such reinforcement. These authors also observed that the reinforcing properties of morphine were associated with psychomotor stimulant activity(15) demonstrable in extremely low dosages.(16)


Nonblind Study Heroin Injection Catecholamine Metabolism Noradrenergic Transmission Percent Change Score 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Smith, C. B., Villarreal, J. E., Bednarczyk, J. H., and Sheldon, M. I. Tolerance to morphine-induced increases in 14C-catecholamine synthesis in mouse brain. Science 170:1106–1107, 1970.PubMedCrossRefGoogle Scholar
  2. 2.
    Loh, H. H., Hitzemann, R. J., and Way, E. L. Effects of acute morphine administration on the metabolism of brain catecholamines. Life Sci. 12:33–41, 1973.CrossRefGoogle Scholar
  3. 3.
    Vogt, M. The concentration of sympathin in different parts of the central nervous system under normal conditions and after the administration of drugs. J. Physiol. 123:451–481, 1954.PubMedGoogle Scholar
  4. 4.
    Gunne, L. M. Catecholamines and 5-hydroxytryptamine in morphine tolerance and withdrawal. Acta Physiol. Scand. 58(Suppl.):204, 1963.Google Scholar
  5. 5.
    Gunne, L. M., Jonsson, J., and Fuxe, K. Effects of morphine intoxication on brain catecholamine neurons. Eur. J. Pharmacol. 5:338–342, 1969.PubMedCrossRefGoogle Scholar
  6. 6.
    Maynert, E. W., and Klingman, G. I. Tolerance to morphine. I. Effects on catecholamines in the brain and adrenal glands. J. Pharmacol. Exp. Ther. 135:285–295. 1962.PubMedGoogle Scholar
  7. 7.
    Clouet, D. H., Johnson, J. C. Ratner, M., Williams, M., and Gold, G. J. The effect of morphine on rat brain catecholamines: Turnover in vivo and uptake in isolate synapto-somes. In: Frontiers of Catecholamine Research (E. Usdin and S. Synder, eds.). New York: Pergamon, 1973, pp. 1039–1042.Google Scholar
  8. 8.
    Way, E. L., and Shen F. H. Catecholamines and 5-hydroxytryptamine. In: Narcotic Drugs: Biochemical Pharmacology (D. H. Clouet, ed.). New York: Plenum Press, 1971, pp. 229–253.Google Scholar
  9. 9.
    Pozuelo, J., and Kerr, F. W. L. Suppression of craving and other signs of dependence in morphine-addicted monkeys by administration alpha-methyl-para-tyrosine. Mayo Clinic Proc. 47:621–628, 1972.Google Scholar
  10. 10.
    Davis, W. M., and Smith, S. G. Alpha-methyltyrosine to prevent self-administration of morphine and amphetamine. Curr. Ther. Res. 14:814–819, 1972.PubMedGoogle Scholar
  11. 11.
    Davis, W. M., and Smith S. G. Blocking of morphine-based reinforcement by alpha-methyltyrosine. Life Sci. 12:185–194, 1973.CrossRefGoogle Scholar
  12. 12.
    Nelson, J. Thesis submitted for the Ph.D., Boston University School of Medicine, 1970.Google Scholar
  13. 13.
    Stein, L. Chemistry of reward and punishment. In: Psychopharmacology: A Review of Progress, 1957–1967 (D. Efron, ed.). pp. 105–123.Google Scholar
  14. 14.
    Olds, J., and Milner, P. Positive reinforcement produced by electrical stimulation of septal area and other regions of the rat brain. J. Comp. Physiol. Psychol. 47:419–427, 1954.PubMedCrossRefGoogle Scholar
  15. 15.
    Davis, M. S., and Smith, S. G. Noradrenergic basis for reinforcement associated with morphine action in nondependent rats. In: Drug Addiction, Volume 3: Neurobiology and Influences on Behavior (J. M. Singh and H. Lal, eds.). New York: Stratton Intercontinental Medical Book Corp., 1974.Google Scholar
  16. 16.
    Babbini, M., and Davis, W. M. Time-dose relationships for locomotor activity effects of morphine after acute or repeated treatment. Br. J. Pharmacol. 46:213–244, 1972.PubMedGoogle Scholar
  17. 17.
    Powell, D. H. A pilot study of occasional heroin users. Arch. Gen. Psychiatry 28(4):586–594, 1973.PubMedCrossRefGoogle Scholar
  18. 18.
    Milkman, H., and Frosch, W. A. The preferential abuse of heroin and amphetamine. J. Nerv. Ment. Dis. 156(4):242–248, 1973.PubMedCrossRefGoogle Scholar
  19. 19.
    Rado, S. Psychoanalysis of pharmacothymia (drug addiction). Psychoanal. Q. 2(1):1–23, 1933.Google Scholar
  20. 20.
    Schildkraut, J. J. The catecholamine hypothesis of affective disorders: A review of supporting evidence. Am. J. Psychiatry 122:509–522, 1965.PubMedGoogle Scholar
  21. 21.
    Schildkraut, J. J., Davis, J. M., and Klerman, G. L. Biochemistry of depressions. In: Psychopharmacology: A Review of Progress 1957–1967 (D. Efron, ed.). PHS Bull. #1836, pp. 625–649.Google Scholar
  22. 22.
    Eisenman, A. J., Sloan, J. W., Martin, W. R., Jasinski, D. R., and Brooks, J. W. Catecholamine and 17-hydroxycoricosteroid excretion during a cycle of morphine dependence in man. J. Psychiatr. Res. 7:19–28, 1969.PubMedCrossRefGoogle Scholar
  23. 23.
    Weil-Malherbe, H., Smith, E. R. B., Eisenman, A. J., and Fraser, H. F. Plasma catecholamine levels and urinary excretion of catecholamines and metabolites in two human subjects during a cycle of morphine addiction and withdrawal. Biochem. Pharmacol. 14:1621–1633,1965.PubMedCrossRefGoogle Scholar
  24. 24.
    Sloan, J. W., and Eisenman, A. J. Long-persisting changes in catecholamine metabolism following addiction to and withdrawal from morphine. Ass. Res. Nerv. Ment. Dis. 46:96–105, 1968.Google Scholar
  25. 25.
    Axelrod, J. Noradrenaline: Fate and control of its biosynthesis. Science 173:598–606, 1972.CrossRefGoogle Scholar
  26. 26.
    Mass, J. W., Dekirmenjian, H., Garver, D., et al. Catecholamine metabolite excretion following intraventricular injection of 6-OH-dopamine. Brain Res. 41:507–511, 1972.CrossRefGoogle Scholar
  27. 27.
    Schildkraut, J. J. Neuropsychopharmacology of the Affective Disorders. Boston: Little, Brown, 1970.Google Scholar
  28. 28.
    Dekirmenjian, H., and Maas, J. W. An improved procedure of 3-methoxy-4-hydroxyphenylglycol determination by gas-liquid chromatography. Anal. Biochem. 35:113–122, 1970.PubMedCrossRefGoogle Scholar
  29. 29.
    Schildkraut, J. J., Meyer, R. E., Orsulak, P., et al. Catecholamine metabolism during heroin use. Am. J. Psychiatry 134:534–537, 1977.PubMedGoogle Scholar
  30. 30.
    Goldstein, A. Opioid peptides (endorphins) in pituitary and brain. Science 193:1081–1086, 1976.PubMedCrossRefGoogle Scholar
  31. 31.
    Beluzzi, J. D., and Stein, L. Enkephalin may mediate euphoria and drive reduction reward. Nature 266:556–558, 1977.CrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1979

Authors and Affiliations

  • Roger E. Meyer
  • Joseph J. Schildkraut
  • Steven M. Mirin
  • Paul J. Orsulak

There are no affiliations available

Personalised recommendations