Advertisement

Genetic Signals and Nucleotide Sequences in Messenger RNA

  • Joan Argetsinger Steitz
Part of the Biological Regulation and Development book series (BRD, volume 1)

Abstract

Today every schoolchild learns that DNA makes RNA and RNA makes protein. He is further taught that a messenger RNA molecule is like a string of beads consisting of A, C, G, and U residues. The genetic information is read out (like any written code) in a linear fashion, here in groups of three. Such imagery immediately engenders the notion that RNA functions purely as a one-dimensional structure and that all of its secrets are locked in its sequence of bases. Of course, the latter concept is, in essence, true. Just as the amino acid sequence of a polypeptide chain ultimately determines the three-dimensional folding of a protein, so does the sequence of nucleotides in an RNA molecule dictate its potential for forming internal Watson—Crick base pairs (RNA secondary structure) which may further interact specifically with each other (RNA tertiary structure). Indeed, it has long been accepted that tRNA molecules utilize both base pairing and intramolecular bonds of other types to assume a quite defined shape which allows their specific recognition by ribosomes, aminoacyl-tRNA synthetases, and so on. However, it is a more recent realization that messenger RNAs and ribosomal RNAs can form thermodynamically stable secondary and tertiary structures as well.

Keywords

Coat Protein Cold Spring Harbor Ribosomal Subunit Genetic Signal Initiation Complex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, J. M., and Cory, S., 1975, Modified nucleosides and bizarre 5’-termini in mouse myeloma mRNA, Nature 255: 28.PubMedCrossRefGoogle Scholar
  2. Adams, J. M., Cory, S., and Spahr, P. F., 1972, Nucleotide sequences of fragments of R17 bacteriophage RNA from the region immediately preceding the coat-protein cistron, Eur. J. Biochem. 29: 469.PubMedCrossRefGoogle Scholar
  3. Adesnik, M., and Darnell, J. E., 1972, Biogenesis and characterization of histone messenger RNA in the HeLa cell, J. Mol. Biol. 67: 397.PubMedCrossRefGoogle Scholar
  4. Alberts, B. M., and Frey, L., 1970, T4 bacteriophage gene 32: A structural protein in the replication and recombination of DNA, Nature 227: 1313.PubMedCrossRefGoogle Scholar
  5. Ames, B. N., and Martin, R. G., 1964, Biochemical aspects of genetics: The operon, Annu. Rev. Biochem. 33: 235.PubMedCrossRefGoogle Scholar
  6. Anderson, R. A., and Coleman, J. E., 1975, Physicochemical properties of DNA binding proteins: Gene 32 protein of T4 and Escherichia coli unwinding protein, Biochemistry 14: 5485.PubMedCrossRefGoogle Scholar
  7. Arrand, J. R., and Hindley, J., 1973, Nucleotide sequence of a ribosome binding site on RNA synthesized in vitro from coliphage T7, Nature New Biol. 244: 10.PubMedGoogle Scholar
  8. Axelrod, N., 1976, Transcription of bacteriophage 0X174 in vitro: Selective initiation with oligonucleotides, J. Mol. Biol. 108: 753.PubMedCrossRefGoogle Scholar
  9. Baan, R. A., Duijfjes, J. J., Van Leerdam, E., Van Knippenberg, P. H., and Bosch, L., 1976, Specific in situ cleavage of 16S ribosomal RNA of Escherichia coli interferes with the function of initiation factor IF-1, Proc. Natl. Acad. Sci. U.S.A. 73: 702.PubMedCrossRefGoogle Scholar
  10. Baan, R. A., Hilbers, C. W., Van Chardorp, R., Van Leerdam, E., Van Knippenberg, P. H., and Bosch, L., 1977, A high resolution proton magnetic resonance study of the secondary structure of the 3’ terminal 49 nucleotide fragment of 16S rRNA from Escherichia coli, Proc. Natl. Acad. Sci. U.S.A. 74: 1028.PubMedCrossRefGoogle Scholar
  11. Baas, P. D., Jansz, H. S., and Sinsheimer, R. L., 1976, Bacteriophage 0X174 DNA synthesis in a replication-deficient host: Determination of the origin of OX DNA replication, J. Mol. Biol. 102: 633.PubMedCrossRefGoogle Scholar
  12. Baralle, F. E., 1977a, Complete nucleotide sequences of the 5’ noncoding region of rabbit ß-globin in RNA, Nature 267: 279.PubMedCrossRefGoogle Scholar
  13. Baralle, F. E., 1977b, Structure—function relationship of 5’ noncoding sequences of rabbit a and ßglobin mRNA, Nature 267: 279.PubMedCrossRefGoogle Scholar
  14. Barrell, B. G., 1971, Fractionation and sequence analysis of radioactive nucleotides, in: Procedures in Nucleic Acid Research, Vol. 2 ( G. L. Cantoni and D. R. Davies, eds.), pp. 751–779, Harper, New York.Google Scholar
  15. Barrell, B. G., Air, G. M., and Hutchinson, C. A., III, 1976, Overlapping genes in bacteriophage 0X174, Nature 264: 34.PubMedCrossRefGoogle Scholar
  16. Bear, D. G., Ng, R., Van Derveer, D., Johnson, N. P., Thomas, G., Schleich, T., and Noller, H., 1976, Alteration of polynucleotide secondary structure by ribosomal protein Si, Proc. Natl. Acad. Sci. U.S.A. 73: 1824.PubMedCrossRefGoogle Scholar
  17. Belin, D., and Epstein, R. H., 1977, A temperature-sensitive rIIB mutation which affects the synthesis of bacteriophage T4 rIIB protein, Virology 78: 537.PubMedCrossRefGoogle Scholar
  18. Benne, R., and Pouwels, P. H., 1975, The role of IF-3 in the translation of T7- and cb80trp messenger RNA, Mol. Gen. Genet. 139: 311.PubMedCrossRefGoogle Scholar
  19. Benne, R., Arentzen, R., and Voorma, H.O., 1972, The mechanism of action of initiation factor Fl from Escherichia coli, Biochim. Biophys. Acta 269: 304.PubMedGoogle Scholar
  20. Berissi, H., Groner, Y., and Revel, M., 1971, Effect of a purified initiation factor IF3 (B) on the selection of ribosomal binding sites on phage MS2 RNA, Nature New Biol. 234: 44.PubMedGoogle Scholar
  21. Bernardi, A., and Spahr, P., 1972, Nucleotide sequence at the binding site for coat protein on the RNA of bacteriophage R17, Proc. Natl. Acad. Sci. U.S.A. 69: 3033.PubMedCrossRefGoogle Scholar
  22. Bertrand, K., Korn, L., Lee, F., Platt, T., Squires, C. L., Squires, C., and Yanofsky, C., 1975, New features of the regulation of the tryptophan operon, Science 189: 22.PubMedCrossRefGoogle Scholar
  23. Beyreuther, K., Adler, K., Geisler, N., and Klemm, A., 1973, The amino acid sequence of lac repressor, Proc. Natl. Acad. Sci. U.S.A. 70: 3576.PubMedCrossRefGoogle Scholar
  24. Blumenthal, T., Landers, T. A., and Weber, K., 1972, Bacteriophage Qß replicase contains the protein biosynthesis elongation factors EF Tu and EF Ts, Proc. Natl. Acad. Sci. U.S.A. 69: 1313.PubMedCrossRefGoogle Scholar
  25. Boedtker, H., and Gesteland, R. F., 1975, Physical properties of RNA bacteriophages and their RNA, in: RNA Phages ( N. D. Zinder, ed.), pp. 1–28, Cold Spring Harbor Lab., Cold Spring Harbor, New York.Google Scholar
  26. Bollen, A., Heimark, R. L., Cozzone, A., Traut, R. R., Hershey, J. W. B., and Kahan, L., 1975, Cross-linking of initiation factor IF-2 to Escherichia coli 30 S ribosomal proteins with dimethylsuberimidate, J. Biol. Chem. 250: 4310.PubMedGoogle Scholar
  27. Both, G. W., Furiuchi, Y., Muthukrishnan, S., and Shatkin, A. J., 1975, Ribosome binding to reovirus RNA in protein synthesis requires 5’ terminal 7-methylguanosine, Cell 6: 185.PubMedCrossRefGoogle Scholar
  28. Both, G. W., Bannerjee, A. K., and Shatkin, A. J., 1975b, Methylation-dependent translation of viral messenger RNAs in vitro, Proc. Natl. Acad. Sci. U.S.A. 72: 1189.PubMedCrossRefGoogle Scholar
  29. Bourgeois, S., and Pfahl, M., 1976, Repressors, Adv. Protein Chem. 30: 1.PubMedCrossRefGoogle Scholar
  30. Bowman, C. M., Dahlberg, J. E., Ikemura, T., Konisky, J., and Nomura, M., 1971, Specific inactivation of 16S ribosomal RNA induced by colicin E3 in vivo, Proc. Natl. Acad. Sci. U.S.A. 68: 964.PubMedCrossRefGoogle Scholar
  31. Branlant, C., Sri Widada, J., Krol, A., and Ebel, J. P., 1976, Extensions of the known sequences at the 3’ and 5’ ends of 23S ribosomal RNA from Escherichia coli, possible base pairing between these 23S regions and 16S ribosomal RNA, Nucleic Acids Res. 3: 1671.PubMedGoogle Scholar
  32. Brawerman, G., 1974, Eukaryotic messenger RNA, Annu. Rev. Biochem. 43: 621.PubMedCrossRefGoogle Scholar
  33. Bretscher, M. S., 1969, Direct translation of bacteriophage fd DNA in the absence of neomycin B, J. Mol. Biol. 42: 595.PubMedCrossRefGoogle Scholar
  34. Capecchi, M. R., and Klein, H. A., 1969, Characterization of three proteins involved in polypeptide chain termination, Cold Spring Harbor Symp. Quant. Biol. 34: 469.PubMedCrossRefGoogle Scholar
  35. Capecchi, M. R., and Webster, R. E., 1975, Bacteriophage RNA as template for in vitro protein synthesis, in: RNA Phages ( N. D. Zinder, ed.), pp. 279–299, Cold Spring Harbor Lab., Cold Spring Harbor, New York.Google Scholar
  36. Carmichael, G. G., 1975, Isolation of bacterial and phage proteins by homopolymer RNA-cellulose chromatography, J. Biol. Chem. 250: 6160.PubMedGoogle Scholar
  37. Chapman, N. M., and Noller, H. F., 1977, Differential accessibility of specific sites in 16S RNA in 30S and 70S ribosomes, J. Mol. Biol. 109: 131.PubMedCrossRefGoogle Scholar
  38. Clark, B. F. C., and Marcker, K. A., 1966, The role of N-formylmethionyl-sRNA in protein biosynthesis, J. Mol. Biol. 17: 394.PubMedCrossRefGoogle Scholar
  39. Crick, F. H. C., 1968, The origin of the genetic code, J. Mol. Biol. 38: 367.PubMedCrossRefGoogle Scholar
  40. Crick, F. H. C., Brenner, S., Klug, A., and Pieczenik, G., 1976, A speculation on the origin of protein synthesis, Origins of Life 7: 389.PubMedCrossRefGoogle Scholar
  41. Crouch, R. J., 1974, Ribonuclease III does not degrade deoxyribonucleic acid—ribonucleic acid hybrids, J. Biol. Chem. 249: 1314.PubMedGoogle Scholar
  42. Curtis, P. J., and Weissmann, C., 1976, Purification of globin messenger RNA from dimethylsulfoxideinduced Friend cells and detection of a putative globin messenger RNA precursor, J. Mol. Biol. 106: 1061.CrossRefGoogle Scholar
  43. Czernilofsky, A. P., Kurland, C. G., and Stöffler, G., 1975, 30S ribosomal proteins associated with the 3’-terminus of 16S RNA, FEBS Lett. 58: 281.PubMedCrossRefGoogle Scholar
  44. Dahlberg, A. E., 1974, Two forms of the 30S ribosomal subunit of Escherichia coli, J. Biol. Chem. 249: 7673.PubMedGoogle Scholar
  45. Dahlberg, A. E., and Dahlberg, J. E., 1975, Binding of ribosomal protein S1 of Escherichia coli to the 3’ end of 16S rRNA, Proc. Natl. Acad. Sci. U.S.A. 72: 2940.PubMedCrossRefGoogle Scholar
  46. Dahlberg, A. E., Lund, E., Kjeldgaard, N. O., Bowman, C. M., and Nomura, M., 1973, Colicin E3-induced cleavage of 16S ribosomal ribonucleic acid; blocking effects of certain antibiotics, Biochemistry 12: 948.PubMedCrossRefGoogle Scholar
  47. Dahlberg, J. E., 1968, Terminal sequences of bacteriophage RNAs, Nature 220: 548.PubMedCrossRefGoogle Scholar
  48. Dalgarno, L., and Shine, J., 1973, Conserved terminal sequence in 18S rRNA may represent terminator anticodons, Nature New Biol. 245: 261.PubMedCrossRefGoogle Scholar
  49. Darnell, J. E., Jelinek, W. R., and Molloy, G. R., 1973, Biogenesis of mRNA: Genetic regulation in mammalian cells, Science 181: 1215.PubMedCrossRefGoogle Scholar
  50. Dasgupta, R., Shih, D. S., Saris, C., and Kaesberg, P., 1975, Nucleotide sequence of a viral RNA fragment that binds to eukaryotic ribosomes, Nature 256: 624.Google Scholar
  51. Delius, H., Westphal, H., and Axelrod, N., 1973, Length measurements of RNA synthesized in vitro by Escherichia coli RNA polymerase, J. Mol. Biol. 74: 677.PubMedCrossRefGoogle Scholar
  52. Dondon, J., Godfrey-Colburn, T., Graffe, M., and Grunberg-Manago, M., 1974, IF-3 requirements for initiation complex formation with synthetic messengers in E. coli system, FEBS Lett. 45: 82.PubMedCrossRefGoogle Scholar
  53. Draper, D. E., and von Hippel, P. H., 1976, Gene expression: Polynucleotide binding properties of E. cob ribosomal protein Si, ICN-UCLA Symp. Mol. Cell. Biol. 5: 421.Google Scholar
  54. Dube, S. K., 1973, Recognition of tRNA by the ribosome: A possible role of 5S RNA, FEBS Lett. 36: 39.PubMedCrossRefGoogle Scholar
  55. Dube, S. K., Marcker, K. A., Clark, B. F. C., and Cory, S., 1968, Nucleotide sequence of N-formylmethionyl-transfer RNA, Nature 218: 232.PubMedCrossRefGoogle Scholar
  56. Dunn, J. J., 1976, RNase.III cleavage of single-stranded RNA: Effect of ionic strength on the fidelity of cleavage, J. Biol. Chem. 251: 3807.PubMedGoogle Scholar
  57. Dunn, J. J., and Studier, F. W., 1973a, T7 early RNAs are generated by site-specific cleavages, Proc. Natl. Acad. Sci. U.S.A. 70: 1559.PubMedCrossRefGoogle Scholar
  58. Dunn, J. J., and Studier, F. W., 1973b, T7 early RNAs and Escherichia coli ribosomal RNAs are cut from large precursor RNAs in vitro by ribonuclease III, Proc. Natl. Acad. Sci. U.S.A. 70: 3296.PubMedCrossRefGoogle Scholar
  59. Dunn, J. J., and Studier, F. W., 1975, Effect of RNAase III cleavage on translation of bacteriophage T7 messenger RNAs, J. Mol. Biol. 99: 487.PubMedCrossRefGoogle Scholar
  60. Ehresmann, C., Stiegler, P., and Ebel, J.-P., 1974, Sequence analysis of the 3’-T1 oligonucleotide of 16S ribosomal RNA from Escherichia coli, FEBS Lett. 49: 47.PubMedCrossRefGoogle Scholar
  61. Ehresmann, C., Stiegler, P., Mackie, G. A., Zimmermann, R. A., Ebel, J.-P., and Fellner, P., 1975, Primary sequence of the 16S ribosomal RNA of Escherichia coli, Nucleic Acids Res. 2: 265.PubMedCrossRefGoogle Scholar
  62. Eladari, M.-E., and Galibert, R., 1975, Sequence determination of 5’-terminal and 3’-terminal oligonu-cleotides of 18S ribosomal RNA of a mouse cell line (L 5178 Y), Eur. J. Biochem. 55: 247.PubMedCrossRefGoogle Scholar
  63. Erdmann, V. A., 1976, Structure and function of 5S and 5.8S RNA, Prog. Nucleic Acid Res. Mol. Biol. 18: 45.PubMedCrossRefGoogle Scholar
  64. Erdmann, V. A., Sprinzl, M., and Pongs, O., 1973, The involvement of 5S RNA in the binding of tRNA to ribosomes, Biochem. Biophys. Res. Commun. 54: 942.PubMedCrossRefGoogle Scholar
  65. Ewald, R., Pon, C., and Gualerzi, C., 1976, Reactivity of ribosomal sulfhydryl groups in 30S ribosomal subunits of Escherichia cob and 30S-IF-3 complexes, Biochemistry 15: 4786.PubMedCrossRefGoogle Scholar
  66. Feldman, M. Y., 1973, Reactions of nucleic acids and nucleoproteins with formaldehyde, Prog. Nucleic Acid Res. Mol. Biol. 13: 1.PubMedCrossRefGoogle Scholar
  67. Fernandez-Munoz, R., and Darnell, J. E., 1976, Structural difference between the 5’ termini of viral and cellular mRNA in poliovirus-infected cells: Possible basis for the inhibition of host protein synthesis, J. Virol. 18: 719.PubMedGoogle Scholar
  68. Fiers, W., Contreras, R., Duerinck, F., Haegeman, G., Merregaert, J., Min Jou, W., Raeymaekers, A., Volckaert, G., Ysebaert, M., Van de Kerckhove, J., Nolf, F., and Van Montagu, M., 1975, A-protein gene of bacteriophage MS2, Nature 256: 273.PubMedCrossRefGoogle Scholar
  69. Fiers, W., Contreras, R., Duerinck, F., Haegeman, G., Iserentant, D., Merregaert, J., Min Jou, W., Molemans, F., Raeymaekers, A., Van den Berghe, A., Volckaert, G., and Ysebaert, M., 1976, Complete nucleotide sequence of bacteriophage MS2 RNA: Primary and secondary structure of the replicase gene, Nature 260: 500.PubMedCrossRefGoogle Scholar
  70. Files, J. G., Weber, K., and Miller, J. H., 1974, Translational reinitiation: Reinitiation of lac repressor fragments at three internal sites early in the lac i gene of Escherichia coli, Proc. Natl. Acad. Sci. U.S.A. 71: 667.PubMedCrossRefGoogle Scholar
  71. Files, J. G., Weber, K., Coulondre, C., and Miller, J. H., 1975, Identification of the UUG codon as a translational initiation codon in vivo, J. Mol. Biol. 95: 327.PubMedCrossRefGoogle Scholar
  72. Fiser, I., Margaritella, P., and Kuechler, E., 1975, Photoaffinity reaction between polyuridylic acid and protein S1 on the Escherichia coli ribosome, FEBS Lett. 52: 281.PubMedCrossRefGoogle Scholar
  73. Fox, G. E., and Woese, C. R., 1975, 5S RNA secondary structure, Nature 256: 505.Google Scholar
  74. Fresco, J. R., Alberts, B. M., and Doty, P., 1960, Some molecular details of the secondary structure of ribonucleic acid, Nature 188: 98.PubMedCrossRefGoogle Scholar
  75. Fukami, H., and Imahori, K., 1971, Control of translation by the conformation of messenger RNA, Proc. Natl. Acad. Sci. U.S.A. 68: 570.PubMedCrossRefGoogle Scholar
  76. Ganem, D., Miller, J. H., Files, J. G., Platt, T., and Weber, K., 1973, Reinitiation of a lac repressor fragment at a codon other than AUG, Proc. Natl. Acad. Sci. U.S.A. 70: 3165.PubMedCrossRefGoogle Scholar
  77. Garel, J. P., Mandel, P., Chavancy, G., and Daillie, J., 1971, Functional adaptation of tRNAs to protein biosynthesis in a highly differentiated cell system, III. Indication of isoacceptor tRNAs during the secretion of fibroin in the silk gland of Bombyx mori L, FEBS Lett. 12: 249.PubMedCrossRefGoogle Scholar
  78. Ginsburg, D., and Steitz, J. A., 1975, The 30S ribosomal precursor RNA from Escherichia coli: A primary transcript containing 23S, 16S, and 5S sequences, J. Biol. Chem. 250: 5647.PubMedGoogle Scholar
  79. Goelz, S., and Steitz, J. A., 1977, E. coli ribosomal protein Si recognizes two sites in bacteriophage Qß RNA, J. Biol. Chem. 252: 5177.Google Scholar
  80. Gold, L., O’Farrell, P. Z., and Russel, M., 1976, Regulation of gene 32 expression during bacteriophage T4 infection of Escherichia coli, J. Biol. Chem. 251: 7251.PubMedGoogle Scholar
  81. Goldberg, M. L., and Steitz, J. A., 1974, Cistron specificity of 30S ribosomes heterologously reconstituted with components from Escherichia coli and Bacillus stearothermophilus, Biochemistry 13: 2123.PubMedCrossRefGoogle Scholar
  82. Gralla, J., and Crothers, D. M., 1973, The free energy of imperfect nucleic acid helices. II. Small hairpin loops, J. Mol. Biol. 73: 497.PubMedCrossRefGoogle Scholar
  83. Gralla, J., and DeLisi, C., 1974, mRNA is expected to form stable secondary structures, Nature 248: 330.Google Scholar
  84. Gralla, J., Steitz, J. A., and Crothers, D. M., 1974, Direct physical evidence for secondary structure in an isolated fragment of R17 bacteriophage mRNA, Nature 248: 204.PubMedCrossRefGoogle Scholar
  85. Gray, P. N., Bellemare, G., Monier, R., Garrett, R. A., and Stöffler, G., 1973, Identification of the nucleotide sequences involved in the interaction between Escherichia coli 5S RNA and specific 50S subunit proteins, J. Mol. Biol. 77: 133.PubMedCrossRefGoogle Scholar
  86. Greenberg, J. R., and Perry, R. P., 1972, Relative occurrence of polyadenylic acid sequences in messenger and heterogeneous nuclear RNA of L cells as determined by poly(U)-hydroxylapatite chromatography, J. Mol. Biol. 72: 91.PubMedCrossRefGoogle Scholar
  87. Grohmann, K., Smith, L. H., and Sinsheimer, R. L., 1975, New method for isolation and sequence determination of 5’-terminal regions of bacteriophage 0X174 in vitro mRNAs, Biochemistry 14: 1951.CrossRefGoogle Scholar
  88. Groner, Y., Pollack, Y., Berissi, H., and Revel, M., 1972, Cistron-specific translation control protein in Escherichia coli, Nature New Biol. 239: 16.PubMedGoogle Scholar
  89. Grosjean, H., Söll, D. G., and Crothers, D. M., 1976, Studies of the complex between transfer RNAs with complementary anticodons. I. Origins of enhanced affinity between complementary triplets, J. Mol. Biol. 103: 499.PubMedCrossRefGoogle Scholar
  90. Grosjean, H. J., de Henau, S., and Crothers, D. M., 1978, On the physical basis for ambiguity in genetic coding, Proc. Natl. Acad. Sci. U.S.A. 75: 610.PubMedCrossRefGoogle Scholar
  91. Grunberg-Manago, M., Rabinowitz, J. C., Dondon, J., Lelong, J. C., and Gros, F., 1971, Different classes of initiation factors F3 and their dissociation activity, FEBS Lett. 19: 193.PubMedCrossRefGoogle Scholar
  92. Gualerzi, C., Risuleo, G., and Pon, C. L., 1977, Initial rate kinetic analysis of the mechanism of initiation complex formation and the role of initiation factor IF-3, Biochemistry 16: 1684.PubMedCrossRefGoogle Scholar
  93. Gupta, S. L., Chen, J., Schaefer, L., Lengyel, P., and Weissman, S. M., 1970, Nucleotide sequence of a ribosome attachment site of bacteriophage f2 RNA, Biochem. Biophys. Res. Commun. 39: 883.PubMedCrossRefGoogle Scholar
  94. Harada, F., and Nishimura, S., 1974, Purification and characterization of AUA specific isoleucine transfer ribonucleic acid from Escherichia coli B, Biochemistry 13: 300.PubMedCrossRefGoogle Scholar
  95. Haseltine, W. A., Maxam, A. M., and Gilbert, W., 1977, The Rous sarcoma virus genome is terminally redundant: The 5’ sequence, Proc. Natl. Acad. Sci. U.S.A. 74: 989.PubMedCrossRefGoogle Scholar
  96. Hawley, D. A., Slobin, L. I., and Wahba, A. J., 1974, The mechanism of action of initiation factor 3 in protein synthesis, II. Association of the 30S ribosomal protein S12 with IF-3, Biochem. Biophys. Res. Commun. 61: 544.PubMedCrossRefGoogle Scholar
  97. Hayashi, M., Fujimura, F. K., and Hayashi, M., 1976, Mapping of in vivo messenger RNAs for bacteriophage 4X-174, Proc. Natl. Acad. Sci. U.S.A. 73: 3519.PubMedCrossRefGoogle Scholar
  98. Heimark, R. L., Kahan, L., Johnston, K., Hershey, J. W. B., and Traut, R. R., 1976, Cross-linking of initiation factor IF 3 to proteins of the Escherichia coli 30S ribosomal subunit, J. Mol. Biol. 105: 219.PubMedCrossRefGoogle Scholar
  99. Held, W. A., Gette, W. R., and Nomura, M., 1974, Role of 16S ribosomal ribonucleic acid and the 30S ribosomal protein S12 in the initiation of natural messenger ribonucleic acid translation, Biochemistry 13: 2115.PubMedCrossRefGoogle Scholar
  100. Helser, T. L., Davies, J. E., and Dahlberg, J. E., 1971, Change in methylation of 16S ribosomal RNA associated with mutation to kasugamycin resistance in Escherichia coli, Nature New Biol. 233: 12.PubMedGoogle Scholar
  101. Henry, T. J., and Knippers, R., 1974, Isolation and function of the gene A initiator of bacteriophage 0X174, a highly specific DNA endonuclease, Proc. Natl. Acad. Sci. U.S.A. 71: 1549.PubMedCrossRefGoogle Scholar
  102. Hermoso, J. M., and Szer, W., 1974, Replacement of ribosomal protein S1 by interference factor is in ribosomal binding of phage MS2 RNA, Proc. Natl. Acad. Sci. U.S.A. 71: 4708.PubMedCrossRefGoogle Scholar
  103. Herr, W., and Noller, H. F., 1975, A fragment of 23S RNA containing a nucleotide sequence complementary to a region of 5S RNA, FEBS Lett. 53: 248.PubMedCrossRefGoogle Scholar
  104. Hewlett, M. J., Rose, J. K., and Baltimore, D., 1976, 5’ terminal structure of polio virus polyribosomal RNA is pUp, Proc. Natl. Acad. Sci. U.S.A. 73: 327.Google Scholar
  105. Hilbers, C. W., Shulman, R. G., Yamane, T., and Steitz, J. A., 1974, High resolution proton NMR study of an isolated fragment of R17 bacteriophage mRNA, Nature 248: 225.PubMedCrossRefGoogle Scholar
  106. Hindley, J., and Staples, D. H., 1969, Sequence of a ribosome binding site in bacteriophage Qß-RNA, Nature 224: 964.PubMedCrossRefGoogle Scholar
  107. Hopfield, J. J., 1974, Kinetic proofreading: A new mechanism for reducing errors in biosynthetic processes requiring high specificity, Proc. Natl. Acad. Sci. U.S.A. 72: 4135.CrossRefGoogle Scholar
  108. Horiuchi, K., 1975, Genetic studies of RNA phages, in: RNA Phages ( N. D. Zinder, ed.) pp. 29–50, Cold Spring Harbor Lab., Cold Spring Harbor, New York.Google Scholar
  109. Inouye, H., Pollack, Y., and Petre, J., 1974, Physical and functional homology between ribosomal protein S1 and interference factor i, Eur. J. Biochem. 45: 109.PubMedCrossRefGoogle Scholar
  110. Isono, K., and Isono, S., 1976, Lack of ribosomal protein SI in Bacillus stearothermophilus, Proc. Natl. Acad. Sci. U.S.A. 73: 767.PubMedCrossRefGoogle Scholar
  111. Isono, S., and Isono, K., 1975, Role of ribosomal protein Si in protein synthesis: Effects of its addition to Bacillus stearothermophilus cell-free system, Eur. J. Biochem. 56: 15.PubMedCrossRefGoogle Scholar
  112. Iwasaki, K., Sabol, S., Wahba, A. J., and Ochoa, S., 1968, Translation of the genetic message. VII. Role of initiation factors in formation of the chain initiation complex with Escherichia coli ribosomes, Arch. Biochem. Biophys. 125: 542.PubMedCrossRefGoogle Scholar
  113. Jacobson, A. B., 1976, Studies on secondary structure of single-stranded RNA from bacteriophage MS2 by electron microscopy, Proc. Natl. Acad. Sci. U.S.A. 73: 307.PubMedCrossRefGoogle Scholar
  114. Jay, G., and Kaempfer, R., 1975a, Initiation of protein synthesis; binding of messenger RNA, J. Biol. Chem. 250: 5742.PubMedGoogle Scholar
  115. Jay, G., and Kaempfer, R., 1975b, Translational repression of a viral messenger RNA by a host protein, J. Biol. Chem. 250: 5749.PubMedGoogle Scholar
  116. Kabat, D., 1975, Potentiation of hemoglobin messenger ribonucleic acid, J. Biol. Chem. 250: 6085. Kaempfer, R., 1972, Initiation factor IF-3: A specific inhibitor of ribosomal subunit association, J. Mol. Biol. 71: 583.Google Scholar
  117. Kamen, R., 1970, Characterization of the subunits of Qß replicase, Nature 228: 527.PubMedCrossRefGoogle Scholar
  118. Kamen, R I., 1975, Structure and function of the Qß RNA replicase, in: RNA Phages ( N. D. Zinder, ed.), pp. 203–234, Cold Spring Harbor Lab., Cold Spring Harbor, New York.Google Scholar
  119. Kelly, R. C., and von Hippel, P. H., 1976, DNA “melting” proteins. III. fluorescence “mapping” of the nucleic acid binding site of bacteriophage T4 gene 32-protein, J. Biol. Chem. 251: 7229.PubMedGoogle Scholar
  120. Kelly, R. C., Jensen, D. E., and von Hippel, P. H., 1976, DNA “melting” proteins. IV. Fluorescence measurements of binding parameters for bacteriophage T4 gene 32-protein to mono-, oligo-, and polynucleotides, J. Biol. Chem. 251: 7240.PubMedGoogle Scholar
  121. Kenner, R. A., 1973, A protein—nucleic acid crosslink in 30S ribosomes, Biochem. Biophys. Res. Commun. 51: 932.PubMedCrossRefGoogle Scholar
  122. Kolakofsky, D., and Weissmann, C., 197la, Possible mechanism for transition of viral RNA from polysome to replication complex, Nature New Biol. 231: 42.Google Scholar
  123. Kolakofsky, D., and Weissmann, C., 1971b, Qß replicase as repressor of Qß RNA-directed protein synthesis, Biochim. Biophys. Acta 246: 596.PubMedGoogle Scholar
  124. Kolakofsky, D., Billeter, M. A., Weber, H., and Weissmann, C., 1973, Resynchronization of RNA synthesis by coliphage Qß replicase at an internal site of the RNA template, J. Mol. Biol. 76: 271.PubMedCrossRefGoogle Scholar
  125. Kondo, M., Gallerani, R., and Weissmann, C., 1970, Subunit structure of Qß replicase, Nature 228: 525.PubMedCrossRefGoogle Scholar
  126. Kozak, M., 1977, Nucleotide sequences of 5’-terminal ribosome-protected initiation regions from two reovirus messages, Nature 269: 390.CrossRefGoogle Scholar
  127. Kozak, M., and Nathans, D., 1972, Translation of the genome of a ribonucleic acid bacteriophage, Bacteriol. Rev. 36: 109.PubMedGoogle Scholar
  128. Kozak, M., and Shatkin, A. J., 1976, Characterization of ribosome-protected fragments from reovirus messenger RNA, J. Biol. Chem. 251: 4259.PubMedGoogle Scholar
  129. Kozak, M., and Shatkin, A. J., 1977, Sequences of two 5’-terminal ribosome-protected fragments from reovirus messenger RNAs, J. Mol. Biol. 112: 75.PubMedCrossRefGoogle Scholar
  130. Krisch, H. M., Bolle, A., and Epstein, R. H., 1974, Regulation of the synthesis of bacteriophage T4 gene 32 protein, J. Mol. Biol. 88: 89.PubMedCrossRefGoogle Scholar
  131. Kurland, C. G., 1974, Functional organization of the 30S ribosomal subunit, in Ribosomes ( M. Nomura, A. Tissières, and P. Lengyel, eds.), pp. 309–331, Cold Spring Harbor Lab.,Cold Spring Harbor, New York.Google Scholar
  132. Ladner, J. E., Jack, A., Robertus, J. D., Brown, R. S., Rhodes, D., Clark, B. F. C., and Klug, A., 1975, Structure of yeast phenylalanine transfer RNA at 2.5 A resolution, Proc. Natl. Acad. Sci. U.S.A. 72: 4414.PubMedCrossRefGoogle Scholar
  133. Lazarowitz, S. G., and Robertson, H. D., 1977, Ribosome-protected regions of reovirus s mRNA, J. Biol. Chem 252: 7842.PubMedGoogle Scholar
  134. Lee, N., and Carbon, J., 1977, Nucleotide sequence of the 5’ end of araBAD operon messenger RNA in Escherichia coli B/r, Proc. Natl. Acad. Sci. U.S.A. 74: 49.PubMedCrossRefGoogle Scholar
  135. Legon, S., 1976, Characterization of the ribosome-protected regions of 125I-labelled rabbit globin messenger RNA, J. Mol. Biol. 106: 37.PubMedCrossRefGoogle Scholar
  136. Legon, S., Model, P., and Robertson, H. D., 1977, The interaction of rabbit reticulocyte ribosomes with bacteriophage fl messenger RNA and Escherichia cob ribosomes with rabbit globin messenger RNA, Proc. Natl. Acad. Sci. U.S.A. 74: 2692.PubMedCrossRefGoogle Scholar
  137. Linney, E., and Hayashi, M., 1974, Intragenic regulation of the synthesis of 0X174 gene A proteins, Nature 249: 345.PubMedCrossRefGoogle Scholar
  138. Lodish, H. F., 1969a, Species specificity of polypeptide chain initiation, Nature 224: 867.PubMedCrossRefGoogle Scholar
  139. Lodish, H. F., 1969b, Independent initiation of translation of two bacteriophage f2 proteins, Biochem. Biophys. Res. Commun. 37: 127.PubMedCrossRefGoogle Scholar
  140. Lodish, H. F., 1970a, Specificity in bacterial protein synthesis: Role of initiation factors and ribosomal subunits, Nature 226: 705.PubMedCrossRefGoogle Scholar
  141. Lodish, H. F., 1970b, Secondary structure of bacteriophage f2 ribonucleic acid and the initiation of in vitro protein biosynthesis, J. Mol. Biol. 50: 689.PubMedCrossRefGoogle Scholar
  142. Lodish, H. F., 1971, Thermal melting of bacteriophage f2 RNA and initiation of synthesis of the maturation protein, J. Mol. Biol. 56: 627.PubMedCrossRefGoogle Scholar
  143. Lodish, H. F., 1974, Model for the regulation of mRNA translation applied to haemoglobin synthesis, Nature 251: 385.PubMedCrossRefGoogle Scholar
  144. Lodish, H. F., 1975, Regulation of in vitro protein synthesis by bacteriophage RNA by RNA tertiary structure, in: RNA Phages ( N. D. Zinder, ed.), pp. 301–318, Cold Spring Harbor Lab., Cold Spring Harbor, New York.Google Scholar
  145. Lodish, H. F., 1976, Translational control of protein synthesis, Annu. Rev. Biochem. 45: 39.PubMedCrossRefGoogle Scholar
  146. Lodish, H. F., and Robertson, H. D., 1969, Regulation of in vitro translation of bacteriophage f2 RNA, Cold Spring Harbor Symp. Quant. Biol. 34: 655.PubMedCrossRefGoogle Scholar
  147. Lozeron, H. A., Anevski, P. J., and Apirion, D., 1977, Antitermination and absence of processing of the eftward transcript of coliphage lambda in the RNAase III-deficient host, J. Mol. Biol. 109: 359.PubMedCrossRefGoogle Scholar
  148. Lucas-Lenard, J., and Lipmann, F., 1971, Protein biosynthesis, Annu. Rev. Biochem. 40: 409.PubMedCrossRefGoogle Scholar
  149. Maizels, N., 1974, E. cob lactose operon ribosome binding site, Nature 249: 647.PubMedCrossRefGoogle Scholar
  150. Marotta, C. A., Forget, B. G., Cohen-Solal, M., and Weissman, S. M., 1976, Nucleotide sequence analysis of coding and noncoding regions of human ß-globin mRNA, Prog. Nucleic Acid Res. Mol. Biol. 19: 165.PubMedCrossRefGoogle Scholar
  151. Meyer, R., Weber, H., Vollenweider, H. J., and Weissmann, C., 1975, The binding sites of Qß replicase on Qß RNA, Experientia 31: 743.CrossRefGoogle Scholar
  152. Michalski, C. J., Sells, B. H., and Wahba, A. J., 1976, Molecular morphology of ribosomes: Effect of chain initiation factor 3 on 30S subunit conformation, FEBS Lett. 71: 347.PubMedCrossRefGoogle Scholar
  153. Miller, M. J., and Wahba, A. J., 1973, Chain initiation factor 2: Purification and properties of two species from Escherichia coli MRE 600, J. Biol. Chem. 248: 1084.PubMedGoogle Scholar
  154. Miller, M. J., and Wahba, A. J., 1974, Inhibition of synthetic and natural messenger translation. II. Specificity and mechanism of action of a protein isolated from Escherichia coli MRE 600 ribosomes, J. Biol. Chem. 249: 3808.PubMedGoogle Scholar
  155. Miller, M. J., Niveleau, A., and Wahba, A. J., 1974, Inhibition of synthetic and natural messenger translation. I. Purification and properties of a protein isolated from Escherichia coli MRE 600 ribosomes, J. Biol. Chem. 249: 3803.PubMedGoogle Scholar
  156. Min Jou, W., and Fiers, W., 1976, Studies on the bacteriophage MS2: XXXIII. Comparison of the nucleotide sequences in related bacteriophage RNAs, J. Mol. Biol. 106: 1047.CrossRefGoogle Scholar
  157. Min Jou, W., Haegeman, G., Ysebaert, M., and Fiers, W., 1972, Nucleotide sequence of the gene coding for the bacteriophage MS2 coat protein, Nature 237: 82.PubMedCrossRefGoogle Scholar
  158. Musso, R., de Crombrugghe, B., Pastan, I., Sklar, J., Yot, P., and Weissman, S., 1974, The 5’-terminal nucleotide sequence of galactose messenger ribonucleic acid of Escherichia coli, Proc. Natl. Acad. Sci. U.S.A. 71: 4940.PubMedCrossRefGoogle Scholar
  159. Muthukrishnan, S., Both, G. W., Furiuchi, Y., and Shatkin, A. J., 1975, 5’ terminal 7-methylguanosine in eukaryotic mRNA is required for translation, Nature 255: 33.Google Scholar
  160. Nikolaev, N., Silengo, L., and Schlessinger, D., 1973, Synthesis of a large precursor to ribosomal RNA in a mutant of Escherichia coli, Proc. Natl. Acad. Sci. U.S.A. 70: 3361.PubMedCrossRefGoogle Scholar
  161. Ninio, J., 1974, A semi-quantitative treatment of missense and nonsense suppression of strA and ram ribosomal mutants of Escherichia coli: Evaluation of some molecular parameters of translation in vivo, J. Mol. Biol. 84: 297.PubMedCrossRefGoogle Scholar
  162. Noll, M., and Noll, H., 1972, Mechanism and control of initiation in the translation of R17 RNA, Nature New Biol. 238: 225.PubMedCrossRefGoogle Scholar
  163. Noller, H. F., and Herr, W., 1974, Nucleotide sequence of the 3’ terminus of E. coli 16 S ribosomal RNA, Mol. Biol. Rep. 1: 437.PubMedCrossRefGoogle Scholar
  164. Nomoto, A., Lee, Y., and Wimmer, E., 1976, The 5’ end of poliovirus mRNA is not capped with ni7G(5’)ppp(5’)Np, Proc. Natl. Acad. Sci. U.S.A. 73: 375.PubMedCrossRefGoogle Scholar
  165. Oakden, K. M., and Lane, B. G., 1975, Wheat embryo ribonucleates. VI. Comparison of the 3’-hydroxyl termini in “rapidly labelled” RNA from metabolizing wheat embryos with the corre-Google Scholar
  166. sponding termini in ribosomal RNA from differentiating embryos of wheat, barley, corn and pea, Can. J. Biochem. 54: 261.Google Scholar
  167. Ochoa, S., and Mazumder, R., 1974, Polypeptide chain initiation, in: The Enzymes, Vol. X ( P. D. Boyer, ed.), pp. 1–51, Academic Press, New York.Google Scholar
  168. Orgel, L. F., 1968, Evolution of the genetic apparatus, J. Mol. Biol. 38: 381.PubMedCrossRefGoogle Scholar
  169. Perry, R. P., 1976, Processing of RNA, Annu. Rev. Biochem. 45: 605.PubMedCrossRefGoogle Scholar
  170. Pieczenik, G., 1972, Ph.D. Thesis, New York University.Google Scholar
  171. Pieczenik, G., Model, P., and Robertson, H. D., 1974, Sequence and symmetry in ribosome binding sites of bacteriophage fl RNA, J. Mol. Biol. 90: 191.PubMedCrossRefGoogle Scholar
  172. Platt, T., and Yanofsky, C., 1975, An intercistronic region and ribosome-binding site in bacterial messenger RNA, Proc. Natl. Acad. Sci. U.S.A. 72: 2399.PubMedCrossRefGoogle Scholar
  173. Platt, T., Weber, K., Ganem, D., and Miller, J. H., 1972, Translational restarts: AUG reinitiation of a lac repressor fragment, Proc. Natl. Acad. Sci. U.S.A. 69: 897.Google Scholar
  174. Pon, C. L., and Gualerzi, C., 1974, Effect of initiation factor 3 binding on the 30S ribosomal subunits of Escherichia coli, Proc. Natl. Acad. Sci. U.S.A. 71: 4950.PubMedCrossRefGoogle Scholar
  175. Pon, C. L., and Gualerzi, C., 1976, The role of 16S rRNA in ribosomal binding of IF-3, Biochemistry 15: 804.PubMedCrossRefGoogle Scholar
  176. Porter, A. G., and Hindley, J., 1973, The binding of Qß initiator fragments to E. coli ribosomes, FEBS Lett. 33: 339.PubMedCrossRefGoogle Scholar
  177. Proudfoot, N. J., and Brownlee, G. G., 1976, 3’ noncoding region sequences in eukaryotic messenger RNA, Nature 263: 211.Google Scholar
  178. Ptashne, M., Backman, K., Humayun, M. Z., Jeffrey, A., Maurer, R., Meyer, B., and Sauer, T., 1976, Autoregulation and function of a repressor in bacteriophage lambda, Science 194: 156.PubMedCrossRefGoogle Scholar
  179. Quigley, G. J., and Rich, A., 1976, Structural domains in transfer RNA molecules, Science 194: 796.PubMedCrossRefGoogle Scholar
  180. Ravetch, J. V., and Jakes, K., 1976, Intact 3’ end of 16S rRNA is not required for specific Mrna binding, Nature 262: 150.PubMedCrossRefGoogle Scholar
  181. Ravetch, J. V., Model, P., and Robertson, H. D., 1977, Isolation and characterization of the 0X174 ribosome, Nature 265: 698.PubMedCrossRefGoogle Scholar
  182. Revel, M., and Greenshpan, H., 1970, Specificity in the binding of Escherichia coli ribosomes to natural messenger RNA, Eur. J. Biochem. 16: 117.PubMedCrossRefGoogle Scholar
  183. Reznikoff, W. S., Winter, R. B., and Katovich Hurley, C., 1974, The location of the repressor binding sites in the lac operon, Proc. Natl. Acad. Sci. U.S.A. 71: 2314.PubMedCrossRefGoogle Scholar
  184. Ricard, B., and Salser, W., 1974, Size and folding of the messenger for phage T4 lysozyme, Nature 248: 314.PubMedCrossRefGoogle Scholar
  185. Ricard, B., and Salser, W., 1975, Secondary structures formed by random RNA sequences, Biochem. Biophys. Res. Commun. 63: 548.PubMedCrossRefGoogle Scholar
  186. Rich, A., and Raj Bhandary, U. L., 1976, Transfer RNA: Molecular structure, sequence, and properties, Annu. Rev. Biochem. 45: 805.PubMedCrossRefGoogle Scholar
  187. Richter, D., Erdmann, V. A., and Sprinzl, M., 1973, Specific recognition of GTIIJC loop (loop IV) of tRNA by 50S ribosomal subunits from E. coli, Nature New Biol. 246: 132.PubMedGoogle Scholar
  188. Richter, D., Erdmann, V. A., and Sprinzl, M., 1974, A new transfer RNA fragment reaction: Tp4,pCpGp bound to a ribosome—messenger RNA complex induces the synthesis of guanosine tetra-and pentaphosphates, Proc. Natl. Acad. Sci. U.S.A. 71: 3226.PubMedCrossRefGoogle Scholar
  189. Robertson, H. D., and Dunn, J. J., 1975, Ribonucleic acid processing activity of Escherichia coli ribonuclease III, J. Biol. Chem. 250: 3050.PubMedGoogle Scholar
  190. Robertson, H. D., and Lodish, H. F., 1970, Messenger characteristics of nascent bacteriophage RNA, Proc. Natl. Acad. Sci. U.S.A. 67: 710.PubMedCrossRefGoogle Scholar
  191. Robertson, H. D., Barrell, B. G., Weith, H. L., and Donelson, J. E., 1973, Isolation and sequence analysis of a ribosome-protected fragment from bacteriophage 4,X174 DNA, Nature New Biol. 241: 38.PubMedCrossRefGoogle Scholar
  192. Robertson, H. D., Dickson, E., and Dunn, J. J., 1977, A nucleotide sequence from a ribonuclease III processing site in bacteriophage T7 RNA, Proc. Natl. Acad. Sci. U.S.A. 74: 822.PubMedCrossRefGoogle Scholar
  193. Rosenberg, M., and Kramer, R., 1977, Nucleotide sequence surrounding a ribonuclease III processing site in bacteriophage T7 RNA, Proc. Natl. Acad. Sci. U.S.A. 74: 984.PubMedCrossRefGoogle Scholar
  194. Rosenberg, M., Kramer, R. A., and Steitz, J. A., 1974, T7 early messenger RNAs are the direct products of ribonuclease III cleavage, J. Mol. Biol. 89: 777.PubMedCrossRefGoogle Scholar
  195. Ross, J., 1976, A precursor of globin messenger RNA, J. Mol. Biol. 106: 403.PubMedCrossRefGoogle Scholar
  196. Russel, M., Gold, L., Morrissett, H., and O’Farrell, P. Z., 1976, Translational, autogenous regulation of gene 32 expression during bacteriophage T4 infection, J. Biol. Chem. 251: 7263.PubMedGoogle Scholar
  197. Salser, W., Browne, J., Clarke, P., Heindell, H., Higuchi, R., Paddock, G., Roberts, J., Studnicka, G., and Zakar, P., 1976, Determination of globin mRNA sequences and their insertion into bacterial plasmids, Prog. Nucleic Acid Res. Mol. Biol. 19: 177.PubMedCrossRefGoogle Scholar
  198. Sanger, F., Air. G. M., Barrell, B. G., Brown, N. L., Coulson, A. R., Fiddes, J. C., Hutchinson, C. A., III, Slocombe, P. M., and Smith, M., 1977, Nucleotide sequence of bacteriophage 0X174 DNA, Nature 265: 687.PubMedCrossRefGoogle Scholar
  199. Santer, M., and Shane, S., 1977, The area of 16S RNA at or near the interface between 30S and 50S ribosomes of E. coli, J. Bacteriol. 130: 900.PubMedGoogle Scholar
  200. Scheps, R., Wax, R., and Revel, M., 1971, Reactivation in vitro of inactive ribosomes from stationary phase Escherichia coli, Biochim. Biophys. Acta 232: 140.PubMedGoogle Scholar
  201. Schiff, N., Miller, M. J., and Wahba, A. J., 1974, Purification and properties of chain initiation factor 3 from T4-infected and uninfected Escherichia coli MRE 600: Stimulation of translation of synthetic and natural messengers, J. Biol. Chem. 249: 3797.PubMedGoogle Scholar
  202. Schwarz, U., Menzel, H. M., and Gassen, H. G., 1976, Codon-dependent rearrangement of the three-dimensional structure of phenylalanine tRNA, exposing the T-q-C-G sequence for binding to the 50S ribosomal subunit, Biochemistry 15: 2484.PubMedCrossRefGoogle Scholar
  203. Senear, A. W., and Steitz, J. A., 1976, Site-specific interaction of Q/3 host factor and ribosomal protein S1 with Qß and R17 bacteriophage RNAs, J. Biol. Chem. 251: 1902.PubMedGoogle Scholar
  204. Senior, B. W., and Holland, I. B., 1971, Effect of colicin E3 upon the 30S ribosomal subunit of Escherichia coli, Proc. Natl. Acad. Sci. U.S.A. 68: 959.PubMedCrossRefGoogle Scholar
  205. Shine, J., and Dalgarno, L., 1974, The 3’-terminal sequence of Escherichia coli 16S ribosomal RNA: Complementarity to nonsense triplets and ribosome binding sites, Proc. Natl. Acad. Sci. U.S.A. 71: 1342.PubMedCrossRefGoogle Scholar
  206. Shine, J., and Dalgarno, L., 1975, Determinant of cistron specificity in bacterial ribosomes, Nature 254: 34.PubMedCrossRefGoogle Scholar
  207. Shine, J., Czernilofsky, A. P., Friedrich, R., Bishop, J. M., and Goodman, H. M., 1977, Nucleotide sequence at the 5’ terminus of the avian Rous sarcoma virus genome, Proc. Natl. Acad. Sci. U.S.A. 74: 1473.PubMedCrossRefGoogle Scholar
  208. Singer, B. S., and Gold, L., 1976, A mutation that confers temperature sensitivity on the translation of rIIB in bacteriophage T4, J. Mol. Biol. 103: 627.PubMedCrossRefGoogle Scholar
  209. Smith, L. H., and Sinsheimer, R. L., 1976, The in vitro transcription units of bacteriophage 0X174. II. In vitro initiation sites of 0X174 transcription, J. Mol. Biol. 103: 699.PubMedCrossRefGoogle Scholar
  210. Sobura, J. E., Chowdhury, M. R., Hawley, D. A., and Wahba, A. J., 1977, Requirement of chain initiation factor 3 and ribosomal protein S1 in translation of synthetic and natural messenger RNA, Nucleic Acids Res. 4: 17.PubMedCrossRefGoogle Scholar
  211. Sprague, K. U., and Steitz, J. A., 1975, The 3’ terminal oligonucleotide of E. coli 16S ribosomal RNA: The sequence in both wild-type and RNase III- cells is complementary to the polypurine tracts common to mRNA initiator regions, Nucleic Acids Res. 2: 787.CrossRefGoogle Scholar
  212. Sprague, K. U., Kramer, R. A., and Jackson, M. B., 1975, The terminal sequences of Bombyx mori 18S ribosomal RNA, Nucleic Acids Res. 2: 2111.PubMedCrossRefGoogle Scholar
  213. Sprague, K. U., Steitz, J. A., Grenley, R. M., and Stocking, C. E., 1977, 3’ terminal sequences of 16S rRNA do not explain translational specificity differences between E. coli and B. stearothermophilus ribosomes, Nature 267: 462.Google Scholar
  214. Stallcup, M. R., Sharrock, W. J., and Rabinowitz, J. C., 1975, Specificity of bacterial ribosomes and messenger ribonucleic acids in protein synthesis reactions in vitro, J. Biol. Chem. 251: 2499.Google Scholar
  215. Stanley, W. M., Jr., Salas, M., Wahba, A. J., and Ochoa, S., 1966, Translation of the genetic message: Factors involved in the initiation of protein synthesis, Proc. Natl. Acad. Sci. U.S.A. 56: 290.PubMedCrossRefGoogle Scholar
  216. Staples, D. H., and Hindley, J., 1971, Ribosome binding site of Qß RNA polymerase cistron, Nature New Biol. 234: 211.PubMedGoogle Scholar
  217. Staples, D. H., Hindley, J., Billeter, M. A., and Weissmann, C., 1971, Localization of Qß maturation cistron ribosome binding site, Nature New Biol. 234: 202.PubMedGoogle Scholar
  218. Steege, D. A., 1977a, A ribosome binding site from the PR RNA of bacteriophage X, J. Mol. Biol. 114: 559.PubMedCrossRefGoogle Scholar
  219. Steege, D. A., 1977b, The 5’ terminal nucleotide sequence of the E. coli lactose repressor messenger RNA: Features of translational initiation and reinitiation sties, Proc. Natl. Acad. Sci. U.S.A. 74: 4163.Google Scholar
  220. Steitz, J. A., 1969, Polypeptide chain initiation: Nucleotide sequences of the three ribosomal binding sites in.bacteriophage R17 RNA, Nature 224: 957.PubMedCrossRefGoogle Scholar
  221. Steitz, J. A., 1972, Oligonucleotide sequence of the replicase initiation site in Qß RNA, Nature New Biol. 236: 71.PubMedCrossRefGoogle Scholar
  222. Steitz, J. A., 1973, Specific recognition of non-initiator regions in RNA bacteriophage messengers by ribosomes of B. stearothermophilus, J. Mol. Biol. 73: 1.PubMedCrossRefGoogle Scholar
  223. Steitz, J. A., 1973, Discriminatory ribosome rebinding of isolated regions of protein synthesis initiation from the ribonucleic acid of bacteriophage R17, Proc. Natl. Acad. Sci. U.S.A. 70: 2605.PubMedCrossRefGoogle Scholar
  224. Steitz, J. A., 1975, Ribosome recognition of initiator regions in the RNA bacteriophage genome, in: RNA Phages ( N. D. Zinder, ed.), pp. 319–352, Cold Spring Harbor Lab. Cold Spring Harbor, New York.Google Scholar
  225. Steitz, J. A., and Bryan, R. A., 1977, Two ribosome binding sites from the gene 0.3 mRNA of bacteriophage T7, J. Mol. Biol. 114: 527.PubMedCrossRefGoogle Scholar
  226. Steitz, J. A., and Jakes, K., 1975, How ribosomes select initiator regions in mRNA: Base pair formation between the 3’ terminus of 16S rRNA and the mRNA during initiation of protein synthesis in Escherichia coli, Proc. Natl. Acad. Sci. U.S.A. 72: 4734.PubMedCrossRefGoogle Scholar
  227. Steitz, J. A., and Steege, D. A., 1977, Characterization of two mRNA•rRNA complexes implicated in the initiation of protein biosynthesis, J. Mol. Biol. 114: 545.PubMedCrossRefGoogle Scholar
  228. Steitz, J. A., Wahba, A. J., Laughrea, M., and Moore, P. B., 1977, Differential requirements for polypeptide chain initiation complex formation at the three bacteriophage R17 initiator regions, Nucleic Acids Res. 4: 1.PubMedCrossRefGoogle Scholar
  229. Suzuki, Y., and Brown, D. D., 1972, Isolation and identification of the messenger RNA for silk fibroin from Bombyx mori, J. Mol. Biol. 63: 409.PubMedCrossRefGoogle Scholar
  230. Szer, W., and Leffler, S., 1974, Interaction of Escherichia coli 30S ribosomal subunits with MS2 phage RNA in the absence of initiation factors, Proc. Natl. Acad. Sci. U.S.A. 71: 3611.PubMedCrossRefGoogle Scholar
  231. Szer, W., Hermoso, J. M., and Leffler, S., 1975, Ribosomal protein S1 and polypeptide chain initiation in bacteria, Proc. Natl. Acad. Sci. U.S.A. 72: 2325.PubMedCrossRefGoogle Scholar
  232. Szer, W., Hermoso, J. M., and Boublik, M., 1976, Destabilization of the secondary structure of RNA by ribosomal protein S1 from Escherichia coli, Biochem. Biophys. Res. Commun. 70: 957.PubMedCrossRefGoogle Scholar
  233. Tal, M., Aviram, M., Kanarek, A., and Weiss, A., 1972, Polyuridylic acid binding and translating by Escherichia coli ribosomes: Stimulation by protein I, inhibition by aurintricarboxylic acid, Biochim. Biophys. Acta 281: 381.PubMedGoogle Scholar
  234. Taniguchi, T., and Weissmann, C., 1978, J. Mol. Biol. 118: 533.CrossRefGoogle Scholar
  235. Dieijen, G., Laken, C. J., nippenberg, P. H., and Duin, J., 1975, Function of Escherichia coli ribosomal protein Si in translation of natural and synthetic messenger RNA, J. Mol. Biol. 93: 351.PubMedCrossRefGoogle Scholar
  236. Dieijen, G., Knippenberg, P. H., and Van Duin, J., 1976, The specific role of ribosomal protein Si in the recognition of native phage RNA, Eur. J. Biochem. 64: 511.PubMedCrossRefGoogle Scholar
  237. Duin, J., and Knippenberg, P. H., 1974, Functional heterogeneity of the 30S ribosomal subunit of Escherichia coli. III. Requirement of protein S1 for translation, J. Mol. Biol. 84: 185.PubMedCrossRefGoogle Scholar
  238. Duin, J., Kurland, C. G., Dondon, J., and Grunberg-Manago, M., 1975, Near neighbors of IF3 ound to 30S ribosomal subunits, FEBS Lett. 59: 287.PubMedCrossRefGoogle Scholar
  239. Duin, J., Kurland, C. G., Dondon, J., Grunberg-Manago, M., Branlant, C., and Ebel, J. P., 1976, New aspects of the IF3-ribosome interaction, FEBS Lett. 62: 111.PubMedCrossRefGoogle Scholar
  240. Voorma, H. O., Benne, R., den Hertog, T. J. A., 1971, Binding of aminoacyl-tRNA to ribosomes programmed with bacteriophage MS2 RNA, Eur. J. Biochem. 18: 451.PubMedCrossRefGoogle Scholar
  241. Wahba, A. J., Iwasaki, K., Miller, M. J., Sabol, S., Sillero, M. A. G., and Vasquez, C., 1969, Initiation of protein synthesis in Escherichia coli. II. Role of the initiation factors in polypeptide synthesis, Cold Spring Harbor, Symp. Quant. Biol. 34: 291.CrossRefGoogle Scholar
  242. Wahba, A. J., Miller, M. J., Niveleau, A., Landers, T. A., Carmichael, G. G., Weber, K., Hawley, D. A., and Slobin, L. I., 1974, Subunit I of Qß replicase and 30S ribosomal protein Si of Escherichia coli: Evidence for the identity of the two proteins, J. Biol. Chem. 249: 3314.PubMedGoogle Scholar
  243. Walz, A., Pirrotta, V., and Ineichen, K., 1976, X repressor regulates the switch between PR and P,,,, promoters, Nature 262: 665.PubMedCrossRefGoogle Scholar
  244. Weber, H., 1976, The binding site for coat protein on bacteriophage Qß RNA, Biochim. Biophys. Acta 418: 175.PubMedGoogle Scholar
  245. Weber, H., Billeter, M. A., Kahane, S., Weissman, C., Hindley, J., and Porter, A., 1972, Molecular basis or the repressor activity of QS replicase, Nature New Biol. 237: 166.PubMedCrossRefGoogle Scholar
  246. Weber, H., Kamen, R., Meyer, F., and Weissmann, C., 1974, Interactions between Qß replicase and Qß RNA, Experientia 30: 711.Google Scholar
  247. Weidner, H., Yuan, R., and Crothers, D. M., 1977, Does 5S RNA function by a switch between two secondary structures? Nature 266: 193.PubMedCrossRefGoogle Scholar
  248. Weissbach, H., and Ochoa, S., 1976, Soluble factors required for eukaryotic protein synthesis, Annu. Rev. Biochem. 45: 191.CrossRefGoogle Scholar
  249. Weissmann, C., Billeter, M. A., Goodman, H. M., Hindley, J., and Weber, H., 1973, Structure and function of phage RNA, Annu. Rev. Biochem. 42: 303.PubMedCrossRefGoogle Scholar
  250. Woese, C. R., 1967, The Genetic Code, Harper, New York.Google Scholar
  251. Woese, C., Sogin, M., Stahl, D., Lewis, B. J., and Bowen, L., 1976, A comparison of the 16S ribosomal RNAs from mesophilic and thermophilic bacilli: Some modifications in the Sanger method for RNA sequencing, J. Mol. Evol. 7: 197.PubMedCrossRefGoogle Scholar
  252. Wool, I. G., and Stöffler, G., 1974, Structure and function of eukaryotic ribosomes, in: Ribosomes ( M. Nomura, A. Tissières, and P. Lengyel, eds.), pp. 417–460, Cold Spring Harbor Lab., Cold Spring Harbor, New York.Google Scholar
  253. Yuan, R. C., Steitz, J. A., and Crothers, D. M., 1976, Direct evidence for secondary structure in the colicin E 3 released 3’-terminal 16S RNA fragment, Fed. Proc. 35: 1351.Google Scholar
  254. Yuan, R. C., Steitz, J. A., Crothers, D. M., and Moore, P. B., 1978, The secondary structure of the 3’ terminal region of E. coli 16S rRNA and its complex with ribosomal protein Sl J. Mol. Biol. (in press).Google Scholar

Copyright information

© Plenum Press, New York 1979

Authors and Affiliations

  • Joan Argetsinger Steitz
    • 1
  1. 1.Department of Molecular Biophysics and BiochemistryYale UniversityNew HavenUSA

Personalised recommendations