Advertisement

On the Molecular Bases of the Specificity of Interaction of Transcriptional Proteins with Genome DNA

  • Peter H. von Hippel
Part of the Biological Regulation and Development book series (BRD, volume 1)

Abstract

In order to understand the transcriptional control of genome function, we must develop a detailed knowledge of the molecular interactions whereby transcriptional proteins recognize and interact with their specific target base pair sequences among the millions of sequences present in the superficially monotonic double-helical DNA of the genome. Most of the interactions that control cellular function and development in both prokaryotes and eukaryotes involve an orderly and progressive succession of DNA—protein interactions. The fraction of these interactions that control transcription are programmed to produce the required messenger RNA (mRNA) molecules, in proper amounts and with appropriate stabilities, in response to triggering signals about which we still know almost nothing (except in a few special cases).

Keywords

Base Pair Sequence Lactose Operon Catabolite Activate Protein Transcriptional Protein Inducer Binding 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adler, H. I., Fisher, W. D., Cohen, A., and Hardigree, A. A., 1967, Miniature Escherichia coli cells deficient in DNA, Proc. Natl. Acad. Sci. U.S.A. 57: 321.PubMedCrossRefGoogle Scholar
  2. Anderson, R. A., and Coleman, J. E., 1975, Physicochemical properties of DNA binding proteins: Gene 32 protein of T4 and Escherichia coli unwinding protein, Biochemistry 14: 5485.PubMedCrossRefGoogle Scholar
  3. Arnott, S., Dover, S. D., and Wonacott, A. J., 1969, Least-squares refinement of the crystal and molecular structures of DNA and RNA from X-ray data and standard bond lengths and angles. Acta Crystallogr. B25: 2192.CrossRefGoogle Scholar
  4. Arnott, S., Chandrasekaran, R., and Selsing, E., 1975, The variety of polynucleotide helices, in: Structure and Conformation of Nucleic Acid and Protein—Nucleic Acid Interactions ( M. Sundaralingam and S. T. Rao, eds.), pp. 577–596, University Park Press, Baltimore, Maryland.Google Scholar
  5. Bahl, C. P., Wu, R., Stawinsky, J., and Narang, S., 1977, Minimal length of the lactose operator sequence for the specific recognition by the lactose repressor, Proc. Natl. Acad. Sci. U.S.A. 74: 966.PubMedCrossRefGoogle Scholar
  6. Barkley, M. D., Riggs, A. D., Jobe, A., and Bourgeois, S., 1975, Interaction of effecting ligands with lac repressor and repressor-operator complex, Biochemistry 14: 1700.PubMedCrossRefGoogle Scholar
  7. Berg, O. G., and Blomberg, C., 1976, Association kinetics with coupled diffusional flows. Special application to the lac repressor-operator system, Biophys. Chem. 4: 367.PubMedCrossRefGoogle Scholar
  8. Burgeois, S., and Jobe, A., 1970, Superrepressors of the lac operon, in: The Lactose Operon ( J. R. Beckwith and D. Zipsen, eds.), pp. 325–341, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  9. Bourgeois, S., and Pfahl, M., 1976, Repressors, Adv. Protein Chem. 30: 1.PubMedCrossRefGoogle Scholar
  10. Britten, R. J., and Kohne, D. E., 1968, Repeated sequences in DNA, Science 161: 529.PubMedCrossRefGoogle Scholar
  11. Butler, A. P., 1976, Physical and Chemical Characterization of the Lactose Repressor, Ph.D. Thesis, University of Oregon, Eugene, Oregon.Google Scholar
  12. Butler, A. P., Revzin, A., and von Hippel, P. H., 1977, Molecular parameters characterizing the interaction of Escherichia coli lac repressor with non-operator DNA and inducer, Biochemistry 16: 4757.PubMedCrossRefGoogle Scholar
  13. Chamberlin, M. J., 1974, The selectivity of transcription, Annu. Rev. Biochem. 43: 721.PubMedCrossRefGoogle Scholar
  14. Chamberlin, M. J., 1976a, RNA polymerase-An overview, in: RNA Polymerase ( R. Losick and M. Chamberlin, eds.), pp. 17–67, Cold Spring Harbor Lab., Cold Spring Harbor, New York.Google Scholar
  15. Chamberlin, M. J., 1976b, Interaction of RNA polymerase with the DNA template, in: RNA Polymerase ( R. Losick and M. Chamberlin, eds.), pp. 159–191, Cold Spring Harbor Lab., Cold Spring Harbor, New York.Google Scholar
  16. Chamness, G. C., and Willson, C. D., 1970, An unusual lac repressor mutant, J. Mol. Biol. 53: 561.PubMedCrossRefGoogle Scholar
  17. Coleman, J. E., Anderson, R. A., Ratcliffe, R. G., and Armitage, I. M., 1976, Structure of gene 5 protein-oligodeoxynucleotide complexes as determined by 1H, 19F, and 31P nuclear magnetic resonance, Biochemistry 15: 5419.PubMedCrossRefGoogle Scholar
  18. de Haseth, P. L., Lohman, T. M., and Record, M. T., Jr., 1977, Nonspecific interaction of lac repressor with DNA: An association reaction driven by counterion release, Biochemistry 16: 4783.CrossRefGoogle Scholar
  19. de Haseth, P. L., Lohman, T. M., Record, M. T., Jr., and Burgess, R. R., 1978, Interactions of E. coli RNA polymerase with native and denatured DNA: Differences in the binding behavior of core and holoenzyme, Biochemistry 17: 1612.CrossRefGoogle Scholar
  20. Draper, D., Pratt, C., and von Hippel, P. H., 1977, E. coli ribosomal protein Sl has two polynucleotide binding sites, Proc. Natl. Acad. Sci. U.S.A. 74: 4786.Google Scholar
  21. Draper, D., and von Hippel, P. H., 1978, Nucleic acid binding properties of E. coli ribosomal protein Sl. II. Cooperativity and specificity of binding site II, J. Mol. Biol. 122: 321.PubMedCrossRefGoogle Scholar
  22. Fasman, G. D., ed., 1976, CRC Handbook of Biochemistry and Molecular Biology, 3rd ed., Section B: Nucleic Acids, Vol. II, CRC Press, Cleveland, Ohio.Google Scholar
  23. Friedman, B. E., Olson, J. S., and Matthews, K. S., 1977, Interaction of lac repressor with inducer. Kinetic and equilibrium measurements, J. Mol. Biol. 111: 27.PubMedCrossRefGoogle Scholar
  24. Gierer, A., 1966, Model for DNA and protein interactions and the function of the operator, Nature 212: 1480.PubMedCrossRefGoogle Scholar
  25. Gilbert, W., 1976, Starting and stopping sequences for the RNA polymerase, in: RNA Polymerase ( R. Losick and M. Chamberlin, eds.), pp. 193–205, Cold Spring Lab., Cold Spring Harbor, New York.Google Scholar
  26. Gilbert, W., Gralla, J., Majors, J., and Maxam, A., 1975, Lactose operator sequences and the action of lac repressors, in: Protein-Ligand Interactions (H. Sund and G. Blauer, eds.), pp. 193–210, de Gruyter, Berlin.Google Scholar
  27. Gilbert, W., Maxam, A., and Mirzabekov, A., 1976a, Contacts between the lac repressor and DNA revealed by methylation, in: Control of Ribosome Synthesis, Alfred Benzon Symp. IX, pp. 139–148, Munksgaard, Copenhagen.Google Scholar
  28. Gilbert, W., Majors, J., and Maxam, A. M.. 1976b, How proteins recognize DNA sequences, in: Organization and Expression of Chromosomes, Life Sciences Research Report 4, pp. 167–178, Heyden and Son, London.Google Scholar
  29. Gnedenko, B. V., and Khinchin, A. Ya., 1962, An Elementary Introduction to the Theory of Probability [translated from the 5th (Russian) edition by L. F. Boron], Dover, New York.Google Scholar
  30. Goeddel, D. V., Yansura, D. G., and Caruthers, M. H. 1977, Binding of synthetic lactose operator DNAs to lactose repressors, Proc. Natl. Acad. Sci. U.S.A. 74: 3292.PubMedCrossRefGoogle Scholar
  31. Goeddel, D. V., Yansura, D. G., and Caruthers, M. H., 1978, How lac repressor recognizes lac operator, Proc. Natl. Acad. Sci. U.S.A. (in press).Google Scholar
  32. Gorski, J., and Gannon, F., 1976, Current models of steroid hormone action: A critique, Annu. Rev. Physiol. 38: 425.PubMedCrossRefGoogle Scholar
  33. Hélène, C., 1977, La reconnaissance sélective des acides nucleiques par les proteins, La Recherche 8: 122.Google Scholar
  34. Hirsh, J., and Schleif, R., 1976, High resolution electron microscopic studies of genetic regulation, J. Mol. Biol. 108: 471.PubMedCrossRefGoogle Scholar
  35. Jacob, F., and Monod, J., 1961, Genetic regulatory mechanisms in the synthesis of proteins, J. Mol. Biol. 3: 318.PubMedCrossRefGoogle Scholar
  36. Jensen, D. E., and von Hippel, P. H., 1977, A boundary sedimentation velocity method for determining nonspecific nucleic acid—protein interaction binding parameters, Anal. Biochem. 80: 267.PubMedCrossRefGoogle Scholar
  37. Jobe, A., Sadler, J. R., and Bourgeois, S., 1974, Lac repressor—operator interaction. IX. The binding of lac repressor to operators containing Oc mutations. J. Mol. Biol. 85: 231.Google Scholar
  38. Kao-Huang, Y., Revzin, A., Butler, A. P., O’Conner, P., Noble, D. W., and von Hippel, P. H., 1977, Nonspecific DNA binding of genome-regulating proteins as a biological control mechanism: Measurement of DNA-bound Escherichia coli lac repressor in vivo, Proc. Natl. Acad. Sci. U.S.A. 74: 4228.PubMedCrossRefGoogle Scholar
  39. Kauzmann, W., 1959, Some factors in the interpretation of protein denaturation, Adv. Protein Chem. 14: 1.PubMedCrossRefGoogle Scholar
  40. Kelly, R. C., and von Hippel, P. H., 1976, DNA “melting” proteins. III. Fluorescence “mapping” of the nucleic acid binding site of bacteriophage T4 gene 32-protein, J. Biol. Chem. 251: 7229.PubMedGoogle Scholar
  41. Kelly, R. C., Jensen, D. E., and von Hippel, P. H., 1976, DNA “melting” proteins. IV. Fluorescence measurements of binding parameters for bacteriophage T4 gene 32-protein to mono-, oligo-, and polynucleotides, J. Biol. Chem. 251: 7240.PubMedGoogle Scholar
  42. Laiken, S. L., Gross, C. A., and von Hippel, P. H., 1972, Equilibrium and kinetic studies of Escherichia coli lac repressor—inducer interactions, J. Mol. Biol. 66: 143.PubMedCrossRefGoogle Scholar
  43. L’Engle, M., 1962, A Wrinkle in Time, Dell, New York.Google Scholar
  44. Lin, S.-Y., and Riggs, A. D., 1975a, A comparison of lac repressor binding to operator and to nonoperator DNA, Biochem. Biophys. Res. Commun. 62: 704.PubMedCrossRefGoogle Scholar
  45. Lin, S.-Y., and Riggs, A. D., 1975b, The general affinity of lac repressor for E. coli DNA: Implications for gene regulation in prokaryotes and eukaryotes, Cell 4: 107.PubMedCrossRefGoogle Scholar
  46. Losick, R., and Chamberlin, M., eds., 1976, RNA Polymerase, Cold Spring Harbor Lab., Cold Spring Harbor, New York.Google Scholar
  47. Majors, J., 1975, Specific binding of CAP factor to lac promoter DNA, Nature 256: 672.PubMedCrossRefGoogle Scholar
  48. McGhee, J. D., 1976, Theoretical calculations of the helix-coil transition of DNA in the presence of large, cooperatively binding ligands, Biopolymers 15: 1345.PubMedCrossRefGoogle Scholar
  49. McGhee, J. D., and von Hippel, P. H. 1974, Theoretical aspects of DNA—protein interactions: Cooperative and non-co-operative binding of large ligands to a one-dimensional homogeneous lattice, J. Mol. Biol. 86: 469.PubMedCrossRefGoogle Scholar
  50. Melchior, W. B., Jr., and von Hippel, P. H., 1973, Alteration of the relative stability of dA dT and dG dC base pairs in DNA, Proc. Natl. Acad. Sci. U.S.A. 70: 298.PubMedCrossRefGoogle Scholar
  51. Miller, J. H., Coulondre, C., Schmeissner, U., Schmitz, A., and Lu, P., 1975. The use of suppressed nonsense mutations to generate altered lac repressor molecules, in: Protein—Ligand Interactions (H. Sund and G. Blauer, eds.), pp. 238–252, de Gruyter, Berlin.Google Scholar
  52. Müller-Hill, B., 1975, Lac repressor and lac operator, Prog. Biophys. Mol. Biol. 30: 227.PubMedCrossRefGoogle Scholar
  53. Ogata, R., and Gilbert, W., 1977, Contacts between the lac repressor and thymines in the lac operator, Proc. Natl. Acad. Sci. U.S.A. 74: 4973.PubMedCrossRefGoogle Scholar
  54. Perlman, R. L., and Pastan, I., 1971, The role of cyclic AMP in bacteria, Curr. Top. Cell. Regul. 3: 117.Google Scholar
  55. Pfahl, M., 1976, Lac repressor—operator interaction. Analysis of the X86 repressor mutant, J. Mol. Biol. 106: 857.Google Scholar
  56. Record, M. T., Jr., Lohman, T. M., and deHaseth, P. L., 1976, Ion effects on ligand—nucleic acid interactions, J. Mol. Biol. 107: 145.PubMedCrossRefGoogle Scholar
  57. Record, M. T., Jr., deHaseth, P. L., and Lohman, T. M., 1977, Interpretation of monovalent and divalent cation effects on the lac repressor—operator interaction, Biochemistry 16: 4791.PubMedCrossRefGoogle Scholar
  58. Revzin, A., and von Hippel, P. H., 1977, Direct measurement of association constants for the binding of Escherichia coli lac repressor to non-operator DNA, Biochemistry 16: 4769.PubMedCrossRefGoogle Scholar
  59. Richter, P. H., and Eigen, M., 1974, Diffusion-controlled reaction rates in spheroidal geometry. Application to repressor—operator association and membrane bound enzymes, Biophys. Chem. 2: 255.PubMedCrossRefGoogle Scholar
  60. Riggs, A. D., Suzuki, H., and Bourgeois, S., 1970a, Lac repressor—operator interaction. I. Equilibrium studies, J. Mol. Biol. 48: 67.Google Scholar
  61. Riggs, A. D., Bourgeois, S., and Cohn, M., 1970b, The lac repressor—operator interaction. III. Kinetic studies, J. Mol. Biol. 53: 401.PubMedCrossRefGoogle Scholar
  62. Roberts, J. W., 1976a, Transcription termination and its control in E. coli, in: RNA Polymerase ( R. Losick and M. Chamberlin, eds.), pp. 247–271, Cold Spring Harbor Lab., Cold Spring Harbor, New York.Google Scholar
  63. Roberts, R. J., 1976b, Restriction endonucleases, CRC Crit. Rev. Biochem. 4: 123.PubMedCrossRefGoogle Scholar
  64. Sadler, J. R., and Novick, A., 1965, The properties of repressor and the kinetics of its action, J. Mol. Biol. 12: 305.PubMedCrossRefGoogle Scholar
  65. Sadler, J. R., and Smith, T. F., 1971, Mapping of the lactose operator, J. Mol. Biol. 62: 139.PubMedCrossRefGoogle Scholar
  66. Schellman, J. A., 1974, Cooperative multisite binding to DNA, Isr. J. Chem. 12: 219.Google Scholar
  67. Schellman, J. A., 1975, Macromolecular binding, Biopolymers 14: 999.CrossRefGoogle Scholar
  68. Seeman, N. C., Rosenberg, J. M., and Rich, A., 1976, Sequence-specific recognition of double helical nucleic acids by proteins, Proc. Natl. Acad. Sci. U.S.A. 73: 804.PubMedCrossRefGoogle Scholar
  69. Smith, T. F., and Sadler, J. R., 1971, The nature of lactose operator constitutive mutations, J. Mol. Biol. 59: 273.PubMedCrossRefGoogle Scholar
  70. Sobell, H. M., 1973a, Symmetry in protein—nucleic acid interaction and its genetic implications, Adv. Genet. 17: 411.PubMedCrossRefGoogle Scholar
  71. Sobell, H. M., 1973b, The stereochemistry of actinomycin binding to DNA and its implications in molecular biology, Prog. Nucleic Acid Res. Mol. Biol. 13: 153.PubMedCrossRefGoogle Scholar
  72. Sommer, H., Lu, P., and Miller, J. H., 1976, Lac repressor. Fluorescence of the two tryptophans, J. Biol. Chem. 251: 3774.Google Scholar
  73. Sundaralingam, M., 1975, Principles governing nucleic acid and polynucleotide conformations, in: Structure and Conformation of Nucleic Acids and Protein—Nucleic Acid Interactions ( M. Sundaralingam and S. T. Rao, eds.), pp. 487–524, University Park Press, Baltimore, Maryland.Google Scholar
  74. Tanford, C., 1962, Contributions of hydrophobic interactions to the stability of the globular conformation of proteins, J. Am. Chem. Soc. 84: 4240.CrossRefGoogle Scholar
  75. Thomas, C. A., Jr., 1966, Recombination of DNA molecules, Prog. Nucleic Acid Res. Mol. Biol. 5: 315.PubMedCrossRefGoogle Scholar
  76. Toulmé, J.J., and Hélène, C., 1977, Specific recognition of single-stranded nucleic acids, J. Biol. Chem. 252: 244.PubMedGoogle Scholar
  77. von Hippel, P. H., and McGhee, J. D., 1972, DNA—protein interactions, Annu. Rev. Biochem. 41: 231.CrossRefGoogle Scholar
  78. von Hippel, P. H., Revzin, A., Gross, C. A., and Wang, A. C., 1974, Non-specific DNA binding of genome regulating proteins as a biological control mechanism: I. The lac operon: Equilibrium aspects, Proc. Natl. Acad. Sci. U.S.A. 71: 4808.CrossRefGoogle Scholar
  79. von Hippel, P. H., Revzin, A., Gross, C. A., and Wang, A. C., 1975, Interaction of lac repressor with non-specific DNA binding sites, in: Protein—Ligand Interactions (H. Sund and G. Blauer, eds.), pp. 270–288, de Gruyter, Berlin.Google Scholar
  80. von Hippel, P. H., Jensen, D. E., Kelly, R. C., and McGhee, J. D., 1977, Molecular approaches to the interaction of nucleic acids with “melting” proteins, in: Nucleic Acid Protein Recognition ( H. J. Vogel, ed.), pp. 65–89, Academic Press, New York.Google Scholar
  81. Wang, A. C., Revzin, A., Butler, A. P., and von Hippel, P. H., 1977, Binding of E. coli lac repressor to non-operator DNA, Nucleic Acid Res. (Vinograd Memorial Issue) 4: 1579.Google Scholar
  82. Wang, J., 1974, Interactions between twisted DNAs and enzymes: The effects of superhelical turns, J. Mol. Biol. 87: 797.PubMedCrossRefGoogle Scholar
  83. Wang, J., Barkley, M. D., and Bourgeois, S., 1974, Measurements of unwinding of lac operator by repressor, Nature 251: 247.PubMedCrossRefGoogle Scholar
  84. Wartell, R. M., 1977, The transmission of stability or instability from site-specific protein—DNA complexes, Nucleic Acid Res. 4: 2779.PubMedCrossRefGoogle Scholar
  85. Weber, K., Files, J. G., Platt, T., Ganem, D., and Miller, J. H., 1975, Lac repressor, in: Protein—Ligand Interactions (H. Sund and G. Blauer, eds.), pp. 228–237, de Gruyter, Berlin.Google Scholar
  86. Williams, R. C., and Chamberlin, M. J., 1977, Electron microscope studies of transient complexes formed between Escherichia coli RNA polymerase holoenzyme and T7 DNA, Proc. Natl. Acad. Sci. U.S.A. 74: 3740.PubMedCrossRefGoogle Scholar
  87. Wingert, L., and von Hippel, P. H., 1968, The conformation-dependent hydrolysis of DNA by micrococcal nuclease, Biochim. Biophys. Acta 157: 114.PubMedGoogle Scholar
  88. Wu, F. Y.-H., Bandyopadhyay, P., and Wu, C.-W., 1976, Conformational transitions of the lac repressor from Escherichia coli, J. Mol. Biol. 100: 459.PubMedCrossRefGoogle Scholar
  89. Yagil, G., and Yagil, E., 1971, On the relation between effector concentration and the rate of induced enzyme synthesis, Biophys. J. 11: 11.PubMedCrossRefGoogle Scholar
  90. Yamamoto, K. R., and Alberts, B. M., 1975, The interaction of estradiol-receptor protein with the genome: An argument for the existence of undetected specific sites, Cell 4: 301.PubMedCrossRefGoogle Scholar
  91. Yamamoto, K. R., and Alberts, B. M., 1976, Steroid receptors: Elements for modulation of eukaryotic transcription, Annu. Rev. Biochem. 45: 721.PubMedCrossRefGoogle Scholar
  92. Yarus, M., 1969, Recognition of nucleotide sequences, Annu. Rev. Biochem. 38: 841.PubMedCrossRefGoogle Scholar
  93. Zingsheim, H. P., Geisler, N., Mayer, F., and Weber, K., 1977, Complexes of E. cou lac repressor with non-operator DNA revealed by electron microscopy: Two repressor molecules can share the same segment of DNA, J. Mol. Biol. 115: 565.PubMedCrossRefGoogle Scholar
  94. Zubay, G., and Chambers, D. A., 1971, Regulating the lac operon, in: Metabolic Pathways, Vol. 5 ( H. J. Vogel, ed.), pp. 297–347, Academic Press, New York.Google Scholar

Copyright information

© Plenum Press, New York 1979

Authors and Affiliations

  • Peter H. von Hippel
    • 1
  1. 1.Institute of Molecular Biology and Department of ChemistryUniversity of OregonEugeneUSA

Personalised recommendations