Advertisement

Genetic Control Signals in DNA

  • David Pribnow
Part of the Biological Regulation and Development book series (BRD, volume 1)

Abstract

All organisms control the expression of the genetic information stored in their DNA. The DNA in every cell of every organism contains a vast number of genes. The gene products can carry out an equally vast number of biological and biochemical functions. Utilization of this potential must be coordinated and energetically efficient so that any organism can survive the selective pressures of its environment and reproduce in numbers sufficient to avoid extinction. Overall genetic regulation has two primary objectives: first, to allow for biologically favorable adaptive responses to changes in environment, and second, to coordinate an effectively irreversible program of development leading to reproduction. Control signals, encoded in an organism’s DNA, are primary elements of this genetic regulation.

Keywords

Cold Spring Harbor Sigma Factor Catabolite Activator Protein Tryptophan Operon Promoter Utilization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adhya, S., Gottesman, M., and de Crombrugghe, B., 1974, Release of polarity in Escherichia coli by gene N of phage X: Termination and antitermination of transcription, Proc. Natl. Acad. Sci. U.S.A 71: 2534.PubMedCrossRefGoogle Scholar
  2. Adhya, S., Gottesman, M., de Crombrugghe, B., and Court, D., 1976, Transcription termination regulates gene expression, in: RNA Polymerase ( R. Losick and M. Chamberlin, eds.), pp. 719–730, Cold Spring Harbor Lab., Cold Spring Harbor, New York.Google Scholar
  3. Adler, K., Beyreuther, K., Fanning, E., Geisler, E., Gronenborn, B., Klemm, A., Müller-Hill, B., Pfahl, M., and Schmitz, A., 1972, How lac repressor binds to DNA, Nature 237: 322.PubMedCrossRefGoogle Scholar
  4. Ames, B., and Hartman, P. E., 1963, The histidine operon, Cold Spring Harbor Symp. Quant. Biol 28: 349.CrossRefGoogle Scholar
  5. Anderson, W., Schneider, A., Emmer, M., Perlman, R., and Pastan, I., 1971, Purification of and properties of the cyclic adenosine 3’,5’-monophosphate receptor protein which mediates cyclic adenosine 3’,5’-monophosphate-dependent gene transcription in Escherichia coli, J. Biol. Chem 246: 5929.Google Scholar
  6. Arditti, R. R., Scaife, J. G., and Beckwith, J. R., 1968, The nature or mutants in the lac promoter region, J. Mol. Biol 38: 421.PubMedCrossRefGoogle Scholar
  7. Axelrod, N., 1976, Transcription of bacteriophage 4X174 in vitro: Selective initiation with oligonucleotides, J. Mol. Biol 108: 753.PubMedCrossRefGoogle Scholar
  8. Bautz, E. K. F., 1976, Bacteriophage-induced DNA-dependent RNA polymerases, in: RNA Polymerase ( R. Losick and M. Chamberlin, eds.), pp. 273–284, Cold Spring Harbor Lab., Cold Spring Harbor, New York.Google Scholar
  9. Beard, P., Morrow, J. F., and Berg, P., 1973, Cleavage of circular, superhelical simian virus 40 DNA to a linear duplex by S1 nuclease, J. Virol 12: 1303.PubMedGoogle Scholar
  10. Beckwith, J., 1963, Restoration of operon activity by suppressors, Biolchim. Biophys. Acta 76: 162CrossRefGoogle Scholar
  11. Beckwith, J., and Rossow, P., 1974, Analysis of genetic regulatory mechanisms, Annu. Rev. Genet 8: 1PubMedCrossRefGoogle Scholar
  12. Beckwith, J., Grodzicker, T., and Arditti, R., 1972, Evidence for two sites in the lac promoter region, J. Mol. Biol 69: 155.PubMedCrossRefGoogle Scholar
  13. Bennett, G. N., Schweingruber, M. E., Brown, K. D., Squires, C., and Yanofsky, C., 1976, Nucleotide sequence of region preceding trp mRNA initiation site and its role in promoter and operator function, Proc. Natl. Acad. Sci. U.S.A 73: 235.CrossRefGoogle Scholar
  14. Bertrand, K., and Yanofsky, C., 1976, Regulation of transcription termination in the leader region of the tryptophan operon on Escherichia coli involves tryptophan or its metabolic product, J. Mol. Biol 103: 339.PubMedCrossRefGoogle Scholar
  15. Bertrand, K., Korn, L., Lee, F., Platt, T., Squires, C. L., Squires, C., and Yanofsky, C., 1975, New features of the regulation of the tryptophan operon, Science 189: 22.PubMedCrossRefGoogle Scholar
  16. Bertrand, K., Squires, C., and Yanofsky, C., 1976, Transcription termination in vivo in the leader region of the tryptophan operon of Escherichia coli, J. Mol. Biol 103: 319.PubMedCrossRefGoogle Scholar
  17. Bertrand, K., Korn, L. J., Lee, F., and Yanofsky, C., 1977, The attenuator of the tryptophan operon of Escherichia coli: a. Heterogeneous 3’-OH termini in vivo. b. Deletion mapping of attenuator functions, J. Mol. Biol 117: 227.PubMedCrossRefGoogle Scholar
  18. Beyreuther, K., and Gronenborn, B., 1976, N-terminal sequence of phage lambda repressor, Mol. Gen. Genet 147: 115.PubMedCrossRefGoogle Scholar
  19. Blattner, F. R., and Dahlberg, J. E., 1972, RNA synthesis startpoints in bacteriophage X: Are the promoter and operator transcribed? Nature New Biol. 237: 277.CrossRefGoogle Scholar
  20. Block, R., and Haseltine, W. A., 1974, In vitro synthesis of ppGpp and pppGpp, in: Ribosomes (M. Nomura, A. Tissieres, and P. Lengyel, eds.), pp. 747–761, Cold Spring Harbor Lab., Cold Spring Harbor, New York.Google Scholar
  21. Botchan, P., 1976, An electron microscopic comparison of transcription on linear and superhelical DNA, J. Mol. Biol 105: 161.PubMedCrossRefGoogle Scholar
  22. Bourgeois, S., and Jobe, A., 1970, Superrepressors of the lac operon, in: The Lactose Operon (J. R. Beckwith and D. Zipser, eds.), pp. 325–341, Cold Spring Harbor Lab., Cold Spring Harbor, New York.Google Scholar
  23. Bourgeois, S., and Pfal, M., 1976, Repressors, Adv. Protein Chem 30: 1.PubMedCrossRefGoogle Scholar
  24. Brack, C., and Pirrotta, V., 1975, Electron microscopic study of the repressor of bacteriophage X and its interaction with operator DNA, J. Mol. Biol. 96:139.Google Scholar
  25. Bronson, M., Squires, C., and Yanofsky, C., 1973, Nucleotide sequences from tryptophan messenger RNA of Escherichia coli: The sequence corresponding to the amino-terminal region of the first polypeptide specified by the operon, Proc. Natl. Acad. Sci. U.S.A 70: 2335.PubMedCrossRefGoogle Scholar
  26. Burgess, R. R., 1971, RNA polymerase, Annu. Rev. Biochem. 40:711.Google Scholar
  27. Burgess, R. R. 1976, Purification and physical properties of E. coli RNA polymerase, in: RNA Polymerase ( R. Losick and M. Chamberlin, eds.), pp. 69–100, Cold Spring Harbor Lab., Cold Spring Harbor, New York.Google Scholar
  28. Burgess, R. R., Travers, A. A., Dunn, J. J., and Bautz, E. K. F., 1969, Factor stimulating transcription by RNA polymerase, Nature 221: 43.PubMedCrossRefGoogle Scholar
  29. Carmichael, G. G., 1975, Isolation of bacterial and phage proteins by homopolymer RNA-cellulose chromatography, J. Biol. Chem 250: 6160.PubMedGoogle Scholar
  30. Carter, T., and Newton, A., 1971, New polarity suppressors in Escherichia coli: Suppression and messenger RNA stability, Proc. Natl. Acad. Sci. U.S.A 68: 2962.PubMedCrossRefGoogle Scholar
  31. Chadwick, P., Pirrotta, V., Steinberg, R., Hopkins, N., and Ptashne, M., 1970, the X and 434 phage repressors, Cold Spring Harbor Symp. Quant. Biol 35: 283.Google Scholar
  32. Chamberlin, M., 1974, The selectivity of transcription, Annu. Rev. Biochem 43: 721.PubMedCrossRefGoogle Scholar
  33. Chamberlin, M. J., 1976, RNA polymerase—An overview, in: RNA Polymerase (R. Losick and M. Chamberlin, eds.), pp. 17–67, Cold Spring Harbor Lab., Cold Spring Harbor, New York.Google Scholar
  34. Contesse, G., Crépin, M., and Gross, F., 1970, Transcription of the lactose operon in E. cob, in: The Lactose Operon (1. R. Beckwith and D. Zipser, eds.), pp. 111–142, Cold Spring Harbor Lab., Cold Spring Harbor, New York.Google Scholar
  35. Darlix, J. L., 1973, The functions of rho in T7-DNA transcription in vitro, Eur. J. Biochem 35: 517PubMedCrossRefGoogle Scholar
  36. Darlix, J., and Horaist, M., 1975, Existence and possible roles of transcriptional barriers in T7 DNA early region as shown by electron microscopy, Nature 256: 288.PubMedCrossRefGoogle Scholar
  37. Darlix, J. L., Sentenac, A., and Fromageot, P., 1971, Binding of termination factor rho to RNA polymerase and DNA, FEBS Lett. 13: 165.PubMedCrossRefGoogle Scholar
  38. Das, A., Court, D., and Adhya, S., 1976, Isolation and characterization of conditional lethal mutants of Escherichia coli defective in transcription termination factor rho, Proc. Natl. Acad. Sci. U.S.A 73: 1959.PubMedCrossRefGoogle Scholar
  39. Dausse, J. P., Sentenac, A., and Fromageot, P., 1975, Interaction of RNA polymerase from Escherichia coli with DNA. Analysis of T7 DNA early promoter sites, Eur. J. Biochem 57: 569.PubMedCrossRefGoogle Scholar
  40. Dean, W., and Lebowitz, J., 1971, Alterations induced in native superhelices by formaldehyde, Nature New Biol. 231: 1.CrossRefGoogle Scholar
  41. de Crombrugghe, B., Chen, B., Gottesman, M., Varmus, H., Emmer, M., and Perlman, R., 1971a, Regulation of lac mRNA synthesis in a soluble cell-free system, Nature New Biol. 230: 37.PubMedGoogle Scholar
  42. de Crombrugghe, B., Chen, B., Anderson, W., Nissley, S., Gottesman, M., Pastan, I., and Perlman, R., 1971b, Lac DNA, RNA polymerase and cyclic AMP receptor protein, cyclic AMP receptor protein, cyclic AMP, lac repressor and inducer are the essential elements for controlled lac transcription, Nature New Biol. 231: 139.Google Scholar
  43. de Crombrugghe, B., Adhya, S., Gottesman, M., and Pastan, I., 1973, Effect of rho on transcription of bacterial operons, Nature New Biol. 241: 260.PubMedCrossRefGoogle Scholar
  44. Dickson, R. C., Abelson, J., Barnes, W. M., and Reznikoff, W. S., 1975, Genetic regulation: The lac control region, Science 187: 27.PubMedCrossRefGoogle Scholar
  45. Dickson, R. C., Abelson, J., Johnson, P., Reznikoff, W. S., and Barnes, W. M., 1977, Nucleotide sequence changes produced by mutations in the lac promoter of Escherichia coli, J. Mol. Biol 111: 65.Google Scholar
  46. Downey, K., and So. A., 1970, Studies on the kinetics of ribonucleic acid chain initiation and elongation, Biochemistry 9: 2520.PubMedCrossRefGoogle Scholar
  47. Downey, K., Jurmark, B., and So, A., 1971, Determination of nucleotide sequences at promoter regions by the use of dinucleotides, Biochemistry 10: 4970.PubMedCrossRefGoogle Scholar
  48. Duffy, J. J., and Geiduschek, E. P., 1973, Transcription specificity of an RNA polymerase fraction from bacteriophage SPO1-infected B. subtilis, FEBS Lett. 34: 172.PubMedCrossRefGoogle Scholar
  49. Duffy, J. J., and Geiduschek, E. P., 1975, RNA polymerase from phage SPO1-infected and uninfected Bacillus subtilis, J. Biol. Chem 250: 4530.PubMedGoogle Scholar
  50. Duffy, J. J., and Geiduschek, E. P., 1977a, The virus-specified subunits of a modified B. subtilis RNA polymerase are determinants of DNA binding and RNA chain initiation, Cell 8: 595.CrossRefGoogle Scholar
  51. Duffy, J. J., and Geiduschek, E. P., 1977b, Purification of a positive regulatory subunit from phage SPOT-modified RNA polymerase, Nature 270: 28.PubMedCrossRefGoogle Scholar
  52. Duffy, J. J., Petrusek, R. L., and Geiduschek, E. P., 1975, Conversion of Bacillus subtilis RNA polymerase activity in vitro by a protein induced by phage SPO1, Proc. Natl. Acad. Sci. U.S.A 71: 2761.Google Scholar
  53. Dunn, J. J., and Studier, F. W., 1973, T7 early RNAs are generated by site-specific cleavages, Proc. Natl. Acad. Sci. U.S.A 70: 1559.PubMedCrossRefGoogle Scholar
  54. Emmer, M., de Crombrugghe, B., Pastan, I., and Perlman, R., 1970, Cyclic AMP receptor protein of E. coli; Its role in the synthesis of inducible enzymes, Proc. Natl. Acad. Sci. U.S.A 66: 480.PubMedCrossRefGoogle Scholar
  55. Englesberg, E., and Wilcox, G., 1974, Regulation: Positive control, Annu. Rev. Genet 8: 219PubMedCrossRefGoogle Scholar
  56. Epp, C., and Pearson, M. L., 1976, Association of bacteriophage lambda N gene protein with E. coli RNA polymerase, in: RNA Polymerase ( R. Losick and M. Chamberlin, eds.), pp. 667–691, Cold Spring Harbor Lab., Cold Spring Harbor, New York.Google Scholar
  57. Epstein, W., and Beckwith, J., 1968, Regulation of gene expression, Annu. Rev. Biochem 37: 411CrossRefGoogle Scholar
  58. Franklin, N. C., 1974, Altered reading of genetic signals fused to the N operon of bacteriophage X: Genetic evidence for modification of polymerase by the protein product of the N gene, J. Mol. Biol 89: 33.PubMedCrossRefGoogle Scholar
  59. Franklin, N. C., and Luria, S. E., 1961, Transduction by bacteriophage PI and the properties of the lac genetic region in E. coli and S. dysenteriae, Virology 15: 299.PubMedCrossRefGoogle Scholar
  60. Franklin, N. C., and Yanofsky, C., 1976, The N protein of X: Evidence bearing on transcription termination, polarity and the alteration of the E. coli RNA polymerase, in: RNA Polymerise ( R. Losick and M. Chamberlin, eds.), pp. 693–706, Cold Spring Harbor Lab., Cold Spring Harbor, New York.Google Scholar
  61. Friedman, B. E., Olson, J. S., and Matthews, K. S., 1977, Interaction of the lac repressor with inducer. Kinetic and equilibrium measurements, J. Mol. Biol 111: 27.PubMedCrossRefGoogle Scholar
  62. Friedman, D. I., Wilgus, G. S., and Mural, R. J., 1973, Gene N regulator function of phage X imm 21: Evidence that a site of N action differs from a site of N recognition, J. Mol. Biol 81: 505.PubMedCrossRefGoogle Scholar
  63. Fujita, D. J., Ohlsson-Wilhelm, B. M., and Geiduschek, E. P., 1971, Transcription during bacteriophage SPOT development: Mutations affecting the program of viral transcription, J. Mol. Biol 57: 301.PubMedCrossRefGoogle Scholar
  64. Galluppi, G., Lowery, C., and Richardon, J. P., 1976, Nucleoside triphosphate requirement for termination of RNA synthesis by rho factor, in: RIVA Polymerase ( R. Losick and M. Chamberlin, eds.), pp. 657–666, Cold Spring Harbor Lab., Cold Spring Harbor, New York.Google Scholar
  65. Georgopoulos, C. P., 1971, Bacterial mutants in which the gene N function of bacteriophage lambda have an altered RNA polymerase, Proc. Natl. Acad. Sci. U.S.A 68: 2977.PubMedCrossRefGoogle Scholar
  66. Ghysen, A., and Pironio, M., 1972, Relationship between the N function of bacteriophage X and host RNA polymerase, J. Mol. Biol 65: 259.PubMedCrossRefGoogle Scholar
  67. Gilbert, W., 1972, The lac repressor and the lac operator, Ciba Found. Symp 7: 245.PubMedGoogle Scholar
  68. Gilbert, W., 1976, Starting and stopping sequences for the RNA polymerase, in: RNA Polymerase ( R. Losick and M. Chamberlin, eds.), pp. 193–205, Cold Spring Harbor Lab., Cold Spring Harbor, New York.Google Scholar
  69. Gilbert, W., and Maxam, A., 1973, The nucleotide sequence of the lac operator, Proc. Natl. Acad. Sci. U.S.A 70: 3581.PubMedCrossRefGoogle Scholar
  70. Gilbert, W., and Müller-Hill, B., 1966, Isolation of the lac repressor, Proc. Natl. Acad. Sci. U.S.A 56: 1891.PubMedCrossRefGoogle Scholar
  71. Gilbert, W., and Müller-Hill, B., 1967, The lac operator is DNA, Proc. Natl. Acad. Sci. U.S.A 58: 2415PubMedCrossRefGoogle Scholar
  72. Gilbert, W., and Müller-Hill, B., 1970, The lactose repressor, in: The Lactose Operon ( J. R. Beckwith and D. Zipser, eds.), pp. 93–109, Cold Spring Harbor Lab., Cold Spring Harbor, New YorkGoogle Scholar
  73. Gilbert, W., Maizels, N., and Maxam, A., 1973, Sequences of controlling regions of the lactose operon, Cold Spring Harbor Symp. Quant. Biol 38: 845.CrossRefGoogle Scholar
  74. Gilbert, W., Gralla, J., Majors, J., and Maxam, A., 1975, Lactose operator sequences and the action of Lac repressor, in: Symposium on Protein—Ligand Interactions (H. Sund and G. Blauer, eds.), pp. 193–210, de Gruyter, Berlin.Google Scholar
  75. Gilbert, W., Maxam, A., and Mirzebekov, A., 1976, Contacts between the lac repressor and DNA revealed by methylation, in: Control of Ribosome Synthesis ( N. O. Kjelgaard and O. Maalie, eds.), pp. 139–148, The Alfred Benzon Symposium IX, Munksgaard, Copenhagen.Google Scholar
  76. Goeddel, D. V., Yansura, D. G., and Caruthers, M. H., 1977, Studies on gene control regions. VI. The 5-methyl of thymine, a lac repressor recognition site, Nucleic Acids Res. 4: 3039.PubMedCrossRefGoogle Scholar
  77. Goff, C., and Minkley, E. G., 1970, The RNA polymerase sigma factor: A specificity determinant, in: Lepetit Colloquium on RNA Polymerase, Vol. I ( L. Silvestri, ed.), pp. 124–147, North-Holland, AmsterdamGoogle Scholar
  78. Hayashi, M., Fujimura, F. K., and Hayashi, M., 1976, Mapping of in vivo messenger RNAs for bacteriophage IX-174, Proc. Natl. Acad. Sci. U.S.A 73: 3519.PubMedCrossRefGoogle Scholar
  79. Herskowitz, I., 1974, Control of gene expression in bacteriophage lambda, Annu. Rev. Genet 7: 389Google Scholar
  80. Herskowitz, I., and Signer, E. R., 1970, A site essential for expression of all late genes in bacteriophage X, J. Mol. Biol 47: 545.PubMedCrossRefGoogle Scholar
  81. Heyden, B., Nusslein, C., and Schaller, H., 1975, Initiation of transcription within an RNA polymerase binding site, Eur. J. Biochem 55:147.PubMedCrossRefGoogle Scholar
  82. Hinkle, D., and Chamberlin, M., 1972, Studies of the binding of E. coli RNA polymerase to DNA. I. The role of the sigma subunit, J. Mol. Biol 70: 157.PubMedCrossRefGoogle Scholar
  83. Hopkins, J. D., 1974, A new class of promoter mutations in the lactose operon of Escherichia coli, J. Mol. Biol 87: 715.PubMedCrossRefGoogle Scholar
  84. Howard, B., and de Crombrugghe, B., 1975, ATPase activity required for termination of transcription by the E. coli protein factor rho, J. Biol. Chem. 251:2520.Google Scholar
  85. Jackson, E. N., and Yanofsky, C., 1973, The region between the operator and the first structural gene of the tryptophan operon of Escherichia coli may have a regulatory function, J. Mol. Biol 76: 89.PubMedCrossRefGoogle Scholar
  86. Jacob, F., and Monod, J 196la, Genetic regulatory mechanisms in the synthesis of proteins, J. Mol. Biol 3:318 Google Scholar
  87. Jacob, F., and Monod, J., 1961 b, On the regulation of gene activity, Cold Spring Harbor Symp. Quant. Biol 26: 193.Google Scholar
  88. Jacob, F., Ullman, A., and Monod, J., 1964, Le promoteur, élément génétique nécessaire à l’expression d’un operon, C.R. Acad. Sci 258: 3125.Google Scholar
  89. Jobe, A., and Bourgeois, S., 1972, The natural inducer of the lac operon, J. Mol. Biol 69: 397.PubMedCrossRefGoogle Scholar
  90. Jobe, A., Sadler, J. R., and Bourgeois, S., 1974, Lac repressor—operator interaction. IX. The binding of lac repressor to operators containing O` mutations, J. Mol. Biol 85: 231.Google Scholar
  91. Johnston, D. E., and McClure, W. R., 1976, Abortive initiation of in vitro RNA synthesis on bacteriophage X DNA, in: RNA Polymerase ( R. Losick and M. Chamberlin, eds.), pp. 413–428, Cold Spring Harbor Lab., Cold Spring Harbor, New York.Google Scholar
  92. Kasai, T., 1974, Regulation of the expression of the histidine operon in Salmonella typhimurium, Nature 249: 523.PubMedCrossRefGoogle Scholar
  93. Kiefer, M., Neff, N., and Chamberlin, M. J., 1977, Transcriptional termination at the end of the early region of bacteriophages T3 and T7 is not affected by polarity suppressors, J. Virol 22: 548.Google Scholar
  94. Kleid, D., Humayun, Z., Jeffrey, A., and Ptashne, M., 1976, Novel properties of a restriction endonuclease isolated from Haemophilus parahaemolyticus, Proc. Natl. Acad. Sci. U.S.A 73:293.PubMedCrossRefGoogle Scholar
  95. Korn, L. J., and Yanofsky, C., 1976a, Polarity suppressors increase expression of the wild-type tryptophan operon of Escherichia coli, J. Mol. Biol 103: 395.PubMedCrossRefGoogle Scholar
  96. Korn, L. J., and Yanofsky, C., 1976b, Polarity suppressors defective in transcription termination of the tryptophan operon of Escherichia coli have altered rho factor, J. Mol. Biol 106: 231.PubMedCrossRefGoogle Scholar
  97. Kornberg, A., 1976, RNA priming of DNA replication, in: RNA Polymerase ( R. Losick and M. Chamberlin, eds.), pp. 331–352, Cold Spring Harbor Lab., Cold Spring Harbor, New YorkGoogle Scholar
  98. Krakow, J. S., 1966, Azobacter vinelandii ribonucleic acid polymerase. II. Effect of ribonuclease on polymerase activity, J. Biol. Chem 241: 1830.Google Scholar
  99. Krakow, J. S., and Fronk, E., 1969, Azobacter vinelandii ribonucleic acid polymerase. VIII. Pyrophosphate exchange, J. Biol. Chem 244: 5988.Google Scholar
  100. Krakow, J. S., and Pastan, I., 1973, Cyclic adenosine monophosphate receptor: Loss of cAMPdependent DNA binding activity after proteolysis in the presence of cyclic adenosine monophosphate, Proc. Natl. Acad. Sci. U.S.A 70: 2529.PubMedCrossRefGoogle Scholar
  101. Krakow, J. S., Rhodes, G., and Jovin, T. M., 1976, RNA polymerase: Catalytic mechanisms and inhibitors, in: RNA Polymerase (R. Losick and M. Chamberlin, eds.), pp. 127–157, Cold Spring Harbor Lab., Cold Spring Harbor, New York.Google Scholar
  102. Köpper, H., Contreras, R., Khorana, H. G., and Landy, A., 1976, The tyrosine tRNA promoter, in: RNA Polymerase ( R. Losick and M. Chamberlin, eds.), pp. 473–484, Cold Spring Harbor Lab., Cold Spring Harbor, New York.Google Scholar
  103. Lebowitz, P., Weissman, S. H., and Radding, C. M., 1971, Nucleotide sequence of a ribonucleic acid transcribed in vitro from X phage deoxyribonucleic acid, J. Biol. Chem 246: 5120.PubMedGoogle Scholar
  104. Lee, F., Squires, C. L., Squires, C., and Yanofsky, C., 1976, Termination of transcription in vitro in the Escherichia coli tryptophan operon leader region, J. Mol. Biol 103: 383.PubMedCrossRefGoogle Scholar
  105. Losick, R., 1972, In vitro transcription, Annu. Rev. Biochem 41: 409.CrossRefGoogle Scholar
  106. Losick, R., and Pero, J., 1976, Regulatory subunits of RNA polymerase, in: RNA Polymerase ( R. Losick and M. Chamberlin, eds.), pp. 227–246, Cold Spring Harbor Lab., Cold Spring Harbor, New York.Google Scholar
  107. Lowery-Goldhammer, C., and Richardson, J. P., 1974, An RNA-dependent nucleoside triphosphate phosphohydrolase (ATPase) associated with rho termination factor, Proc. Natl. Acad. Sci. U.S.A 71: 2003.Google Scholar
  108. Magasanik, B., 1970, Glucose effects: Inducer exclusion and repression, in: The Lactose Operon ( J. R. Beckwith and D. Zipser, eds.), pp. 189–219, Cold Spring Harbor Lab., Cold Spring Harbor, New York.Google Scholar
  109. Maitra, U., Nakata, Y., and Hurwitz, J., 1967, The role of deoxyribonucleic acid in ribonucleic acid synthesis. XIV. A study of the initiation of ribonucleic acid synthesis, J. Biol. Chem 242: 4908PubMedGoogle Scholar
  110. Maizels, N., 1973, The neucleotide sequence of the lactose messenger ribonucleic acid transcribed from the UV5 promoter mutant of E. coli, Proc. Natl. Acad. Sci. U.S.A 70: 3585.PubMedCrossRefGoogle Scholar
  111. Majors, J., 1975a, Specific binding of CAP factor to lac promoter DNA, Nature 256: 672.PubMedCrossRefGoogle Scholar
  112. Majors, J., 1975b, Initiation of in vitro mRNA synthesis from the wild-type lac promoter, Proc. Natl. Acad. Sci. U.S.A 72: 4394.PubMedCrossRefGoogle Scholar
  113. Majors, J., 1978, Symmetric Binding Sites for CAP Factor within the E. coli lac Promoter, Ph. D. Thesis, Harvard University, Cambridge, Massachusetts.Google Scholar
  114. Maniatis, T., and Ptashne, M., 1973, Multiple repressor binding at the operators in bacteriophage X, Proc. Natl. Acad. Sci. U.S.A 70: 1531.PubMedCrossRefGoogle Scholar
  115. Maniatis, T., Ptashne, M., Barrell, B., and Donelson, J., 1974, Sequence of a repressor-binding site in the DNA of bacteriophage X, Nature 250: 394.PubMedCrossRefGoogle Scholar
  116. Maniatis, T., Ptashne, M., Backman, K., Kleid, D., Flashman, S., Jeffrey, A., and Maurer, R., 1975, Recognition sequences of repressor and polymerase in the operators of bacteriophage lambda, Cell 5: 109.PubMedCrossRefGoogle Scholar
  117. Mangel, W. F., and Chamberlin, M. J., 1974a, Studies of RNA chain initiation by E. coli RNA polymerase bound to T7 DNA. I. An assay for the rate and extent of RNA chain initiation, J. Biol. Chem 249: 2995.PubMedGoogle Scholar
  118. Mangel, W. F., and Chamberlin, M. J., 1974b, Studies of RNA chain initiation by E. coli RNA polymerase bound to T7 DNA. II. The effect of alterations in ionic strength on chain intiation and on the conformation of binary complexes, J. Biol. Chem 249: 3002.PubMedGoogle Scholar
  119. Mangel, W. F., and Chamberlin, M. J., 1974e, Studies of RNA chain initiation by E. coli RNA polymerase bound to T7 DNA. III. The effect of temperature on RNA chain intiation and on the conformation of binary complexes, J. Biol. Chem 249: 3007.PubMedGoogle Scholar
  120. Maurer, R, Maniatis, T., and Ptashne, M., 1974, Promoters are in the operators in phage X, Nature 249: 221.PubMedCrossRefGoogle Scholar
  121. Maxam, A. M., and Gilbert, W., 1977, A new method for sequencing DNA, Proc. Natl. Acad. Sci. U.S.A 74: 560.PubMedCrossRefGoogle Scholar
  122. McDermit, M., Pierce, M., Staley, D., Shimaji, M., Shaw, R., and Wulff, D., 1976, Mutations masking the lambda cin-1 mutation, Genetics 82: 417.PubMedGoogle Scholar
  123. Meyer, B., Kleid, D., and Ptashne, M., 1975, Lambda repressor turns off transcription of its own genes, Proc. Natl. Acad. Sci. U.S.A 72: 4785.PubMedCrossRefGoogle Scholar
  124. Miller, J. H., 1970, Transcription starts and stops in the lac operon, in: The Lactose Operon Q. R. Beckwith and D. Zipser, eds.), pp. 173–188, Cold Spring Harbor Lab., Cold Spring Harbor, New York.Google Scholar
  125. Miller, J. H., Ippen, K., Scaife, J. G., and Beckwith, J. R., 1968, The promoter—operator region of the lac operon of E. coli, J. Mol. Biol 38: 413.PubMedCrossRefGoogle Scholar
  126. Miller, Z., Varmus, H. E., Parks, J. S., Perlman, R. L., and Pastan, I., 1971, Regulation of gal messenger ribonucleic acid synthesis in Escherichia coli by 3’,5’-cydic adenosine monophosphate, J. Biol. Chem 246: 2898.PubMedGoogle Scholar
  127. Minkley, E. G., Pribnow, D., 1973, Transcription of the early region of bacteriophage T7: Selective initiation with dinucleotides, J. Mol. Biol 77: 255.PubMedCrossRefGoogle Scholar
  128. Mitra, S., Zubay, G., and Landy, A., 1975, Evidence for the preferential binding of the catabolite gene activator protein (CAP) to DNA containing the lac promoter, Biochem. Biophys. Res. Commun. 67:857.Google Scholar
  129. Morse, D. E., and Morse, A. N. C., 1976, Dual control of the tryptophan operon is mediated by both tryptophanyl-tRNA synthetase and the repressor, J. Mol. Biol 103: 209.PubMedCrossRefGoogle Scholar
  130. Müller-Hill, B., Crapo, L., and Gilbert W., 1968, Mutants that make more lac repressor, Proc. Natl. Acad. Sci. U.S.A 59: 1259.PubMedCrossRefGoogle Scholar
  131. Musso, R., Di Lauro, R., Rosenberg, M., and de Crombrugghe, B., 1977, Nucleotide sequence of the operator—promoter region of the galactose operon of Escherichia coli, Proc. Natl. Acad. Sci. U.S.A 74: 106.PubMedCrossRefGoogle Scholar
  132. Nakanishi, S., Adhya, S., Gottesman, M. E., and Pastan, I., 1973a, In vitro repression of transcription of gal operon by purified gal repressor, Proc. Natl. Acad. Sci. U.S.A 70: 334.Google Scholar
  133. Nakanishi, S., Adhya, S., Gottesman, M. E., and Pastan, I., 1973b, Studies on the mechanism of action of the gal repressor, J. Biol. Chem 248: 5937.PubMedGoogle Scholar
  134. Neff, N., and Chamberlin, M. J., 1978, Termination of transcription by E. coli RNA polymerase in vitro is affected by ribonucleoside triphosphate base analogs, J. Biol. Chem 253: 2455.PubMedGoogle Scholar
  135. Nissley, S., Anderson, W., Gottesman, M., Perlman, R., and Pastan, I., 1971, In vitro transcription of the gal operon requires cyclic adenosine monophosphate and cyclic adenosine monophosphate receptor protein, J. Biol. Chem 246: 4671.Google Scholar
  136. Okubo, S., Yanagida, T., Fujita, D. J., and Ohlssen-Wilhelm, B. M., 1972, The genetics of bacteriophage SPO1, Biken J. 15: 81.PubMedGoogle Scholar
  137. Pannekoek, H., Brammar, W. J., and Pouwels, P. H., 1975, Punctuation of transcription in vitro of the tryptophan operon of Escherichia coli. A novel type of control of transcription, Mol. Gen. Genet. 136:199.Google Scholar
  138. Parks, J. S., Gottesman, M., Shimada, K., Weisberg, A., Perlman, R. L., and Pastan, I., 197la, Isolation of the gal repressor, Proc. Natl. Acad. Sci. U.S.A 68: 1891.Google Scholar
  139. Parks, J. S., Gottesman, M., Perlman, R. L., and Pastan, I., 1971 b, Regulation of galactokinase synthesis by cyclic adenosine 3’,5’-monophosphate in cell-free extracts of Escherichia coli, J. Biol. Chem 246: 2419.Google Scholar
  140. Pero, J., Nelson, J., and Fox, T. D., 1975a, Highly asymmetric transcription by RNA polymerase containing phage-SPO1-induced polypeptides and a new host protein, Proc. Natl. Acad. Sci. U.S.A 72: 1589.PubMedCrossRefGoogle Scholar
  141. Pero, J., Tijan, R., Nelson, J., and Losick, R., 1975b, In vitro transcription of a late class of phage SPO1 genes, Nature 257: 248.Google Scholar
  142. Petrusek, R., Duffy, J. J., and Geiduschek, E. P., 1976, Control of gene action in phage SPO1 development: Phage-specific modifications of RNA polymerase and a mechanism of positive regulation, in: RNA Polymerase ( R. Losick and M. Chamberlin, eds.), pp. 587–600, Cold Spring Harbor Lab., Cold Spring Harbor, New York.Google Scholar
  143. Pettijohn, D., Stonington, O., and Kossman, C., 1970, Chain termination of ribosomal RNA synthesis in vitro, Nature 228: 235.PubMedCrossRefGoogle Scholar
  144. Pieczenik, G., Barrell, B. G., and Gefter, M. L., 1972, Bacteriophage 4)80-induced low molecular weight RNA, Arch. Biochem. Biophys. 152:152.Google Scholar
  145. Pirrotta, V., Chadwick, P., and Ptashne, M., 1970, Active form of two coliphage repressors, Nature 227: 41.PubMedCrossRefGoogle Scholar
  146. Platt, T., Squires, C., and Yanofsky, C., 1976, Ribosome-protected regions in the leader-trpE sequence of Escherichia coli tryptophan operon messenger RNA, J. Mol. Biol 103: 411.PubMedCrossRefGoogle Scholar
  147. Pribnow, D., 1975a, Nucleotide sequence of an RNA polymerase binding site at an early T7 promoter, Proc. Natl. Acad. Sci. U.S.A 72: 784.PubMedCrossRefGoogle Scholar
  148. Pribnow, D., 1975b, Bacteriophage T7 early promoters: Nucleotide sequences of two RNA polymerase binding sites, J. Mol. Biol: 99: 419.Google Scholar
  149. Ptashne, M., 1971, Repressor and its action, in: The Bacteriophage Lambda ( A. D. Hershey, ed.), pp. 221–238, Cold Spring Harbor Lab., Cold Spring Harbor, New York.Google Scholar
  150. Ptashne, M., Backman, K., Humayun, M. Z., Jeffrey, A., Maurer, R., Meyer, B., and Sauer, R. T., 1976, Autoregulation and function of a repressor in bacteriophage lambda. Interactions of a regulatory protein with sequences in DNA mediate intricate patterns of gene regulation, Science 194: 156.PubMedCrossRefGoogle Scholar
  151. Rabussay, D., and Geiduschek, E. P., 1976, Regulation of gene action in the development of lytic bacteriophages, Comp. Virol 8: 1.Google Scholar
  152. Radding, C. M., and Echols, H., 1968, The role of the N gene of phage X in the synthesis of two phage-specified proteins, Proc. Natl. Acad. Sci. U.S.A 60: 707.PubMedCrossRefGoogle Scholar
  153. Ratner, D., 1976a, The rho gene of E. coli maps at suA, in: RNA Polymerase ( R. Losick and M. Chamberlin, eds.), pp. 645–655, Cold Spring Harbor Lab., Cold Spring Harbor, New YorkGoogle Scholar
  154. Ratner, D., 1976b, Evidence that mutations in the suA polarity suppressing gene directly affect termination factor rho, Nature 259: 151.PubMedCrossRefGoogle Scholar
  155. Record, M. T., Jr., Lohman, T. M., and de.Haseth, P., 1976, Ion effects on ligand—nucleic acid interactions, J. Mol. Biol 107: 145PubMedCrossRefGoogle Scholar
  156. Reichardt, L. F., 1975, Control of bacteriophage lambda repressor synthesis after phage infection: The role of the N, cil, clll and cro products, J. Mol. Biol 93: 267.PubMedCrossRefGoogle Scholar
  157. Reznikoff, W., 1972, The operon revisited, Annu. Rev. Genet 6: 133.PubMedCrossRefGoogle Scholar
  158. Richardson, J. P., 1975, Initiation of transcription by Escherichia coli RNA polymerase from supercoiled and non-supercoiled bacteriophage PM2 DNA, J. Mol. Biol 91: 477.PubMedCrossRefGoogle Scholar
  159. Richardson, J. P., Grimley, C., and Lowery, C., 1975, Transcription termination factor rho activity is altered in E. coli with suA gene mutations, Proc. Natl. Acad. Sci. U.S.A 72: 1725.PubMedCrossRefGoogle Scholar
  160. Riggs, A. D., Bourgeois, S., Newby, R. F., and Cohn, M., 1968, DNA binding of the lac repressor, J. Mol. Biol 34: 365.PubMedCrossRefGoogle Scholar
  161. Riggs, A. D., Suzuki, H., and Bourgeois, S., 1970a, The lac repressor—operator interaction. I. Equilibrium studies, J. Mol. Biol 48: 67.PubMedCrossRefGoogle Scholar
  162. Riggs, A. D., Newby, R. F., and Bourgeois, S., 1970b, The lac repressor—operator interaction. II. Effect of galactosides and other ligands, J. Mol. Biol 51: 303.PubMedCrossRefGoogle Scholar
  163. Riggs, A. D., Bourgeois, S., and Cohn, M., 1970c, The lac repressor—operator interaction. III. Kinetic studies, J. Mol. Biol 53: 401.PubMedCrossRefGoogle Scholar
  164. Roberts, J., 1969, Termination factor for RNA synthesis, Nature 224: 1168.PubMedCrossRefGoogle Scholar
  165. Roberts, J., 1970, The p factor: Termination and antitermination in lambda, Cold Spring Harbor Symp. Quant. Biol 35: 121.CrossRefGoogle Scholar
  166. Roberts, J., 1975, Transcription termination and late control in phage lambda, Proc. Natl. Acad. Sci. U.S.A 72: 3300.PubMedCrossRefGoogle Scholar
  167. Roberts, J. W., 1976, Transcription termination and its control in E. coli, in: RNA Polymerase ( R. Losick and M. Chamberlin, eds.), pp. 247–271, Cold Spring Harbor Lab., Cold Spring Harbor, New York.Google Scholar
  168. Roberts, J. W., and Roberts, C. W., 1975, Proteolytic cleavage of bacteriophage lambda repressor in induction, Proc. Natl. Acad. Sci. U.S.A 72: 147.PubMedCrossRefGoogle Scholar
  169. Rose, J. K., and Yanofsky, C., 1974, Interaction of the operator of the tryptophan operon with repressor, Proc. Natl. Acad. Sci. U.S.A 71: 3134.PubMedCrossRefGoogle Scholar
  170. Rose, J. K., Squires, C. L., Yanofsky, C., Yang, H.-L., and Zubay, G., 1973, Regulation of in vitro transcription of the tryptophan operon by purified RNA polymerase in the presence of partially purified repressor and tryptophan, Nature New Biol. 245: 133.PubMedCrossRefGoogle Scholar
  171. Rosenberg, M., and Kramer, R. A., 1977, Nucleotide sequence surrounding a ribonuclease III processing site in bacteriophage T7 RNA, Proc. Nail. Acad. Sci. U.S.A 74: 984.CrossRefGoogle Scholar
  172. Rosenberg, M., Weissman, S., and de Crombrugghe, B., 1975, Termination of transcription in bacteriophage X. Heterogeneous 3’-terminal oligo-adenylate additions and the effects of p, J. Biol. Chem 250: 4755.PubMedGoogle Scholar
  173. Salstrom, J. S., and Szybalski, W., 1976, Phage lambda nutL mutants unable to utilize N product for leftward transcription, Fed. Proc. 35:1538.Google Scholar
  174. Sanger, F., and Coulson, A. R., 1975, A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase, J. Mol. Biol 94: 441.PubMedCrossRefGoogle Scholar
  175. Sanger, F., Air, G. M., Barrell, B. G., Brown, N. L., Coulson, A. R., Fiddes, J. C., Hutchison, C. A., III, Slocombe, P. M., and Smith, M., 1977, Nucleotide sequence of bacteriophage OX174 DNA, Nature 265: 687.PubMedCrossRefGoogle Scholar
  176. Saucier, J.-M., and Wang, J., 1972, Angular alteration of the DNA helix by E. coli RNA polymerase, Nature 239:167CrossRefGoogle Scholar
  177. Schaller, H., Gray, C., and Herrmann, K., 1975, Nucleotide sequence of an RNA polymerase binding site from the DNA of bacteriophage fd, Proc. Natl. Acad. Sci. U.S.A. 72:737.PubMedCrossRefGoogle Scholar
  178. Seeburg, P. H., Nusslein, C., and Schaller, H., 1977, Interaction of RNA polymerase with promoters from bacteriophage fd, Eur. J. Biochem 74:107PubMedCrossRefGoogle Scholar
  179. Seeman, N. C., Rosenberg, J. M., and Rich, A., 1976, Sequence-specific recognition of double helical nucleic acids by proteins, Proc. Natl. Acad. Sci. U.S.A 73: 804.PubMedCrossRefGoogle Scholar
  180. Sekiya, T., Takeya, T., Contreras, R., Köpper, H., Khorana, H. G., and Landy, A., 1976, Nucleotide sequences at the two ends of the E. coli tyrosine tRNA genes and studies on the promoter, in: RNA Polymerase ( R. Losick and M. Chamberlin, eds.), pp. 455–472, Cold Spring Harbor Lab., Cold Spring Harbor, New York.Google Scholar
  181. Shimizu, N., and Hayashi, M., 1974, In vitro transcription of the tryptophan operon integrated into a transducing phage genome, J. Mol. Biol 84: 315.Google Scholar
  182. So, A. G., and Downey, K. M., 1970, Studies on the mechanism of ribonucleic acid synthesis. II. Stabilization of the deoxyribonucleic acid—ribonucleic acid—polymerase complex by the formation of a single phosphodiester bond, Biochemistry 9: 4788.PubMedCrossRefGoogle Scholar
  183. Spiegelman, G. B., and Whiteley, H. R., 1974, In vivo and in vitro transcription by RNA polymerase from SP82-infected Bacillus subtilis, J. Biol. Chem 249: 1843.Google Scholar
  184. Squires, C., Lee, F., and Yanofsky, C., 1975, Interaction of the trp repressor and RNA polymerase with the trp operon, J. Mol. Biol 92: 93.PubMedCrossRefGoogle Scholar
  185. Squires, C., Lee, F., Bertrand, K., Squires, C. L., Bronson, M. J., and Yanofsky, C., 1976, Nucleotide sequence of the 5’ end of tryptophan messenger RNA of Escherichia coli, J. Mol. Biol 103: 351PubMedCrossRefGoogle Scholar
  186. Stahl, S. J., and Chamberlin, M. J., 1977, An expanded map of T7 bacteriophage: Reading of minor T7 promoter sites in vitro by E. coli RNA polymerase, J. Mol. Biol 112: 577.PubMedCrossRefGoogle Scholar
  187. Sugimoto, K., Okamoto, T., Sugisaki, H., and Takanami, M., 1975, The nucleotide sequence of an RNA polymerase binding site on bacteriophage fd DNA, Nature 253: 410.PubMedCrossRefGoogle Scholar
  188. Sugimoto, K., Sugisaki, T., Okamoto, T., and Takanami, M., 1977, Studies on bacteriophage fd DNA. IV. The sequence of messenger RNA for the major coat protein gene, J. Mol. Biol 110: 487CrossRefGoogle Scholar
  189. Szybalski, W., 1976a, A network of developmental controls in coliphage lambda, in: Cell Differentiation in Microorganisms, Plants and Animals ( L. Nover and K. Mothes, eds.), VEB Fisher Verlag, Jena and Elsevier, Amsterdam.Google Scholar
  190. Szybakski, W., 1976b, Genetic and molecular map of Escherichia coli bacteriophage lambda (X), in: Handbook of Biochemistry and Molecular Biology, 3rd ed. Nucleic Acids, Vol. II ( G. D. Fasman, ed.), pp. 677–685, CRC Press, Cleveland, Ohio.Google Scholar
  191. Takanami, M., Sugimoto, K., Sugisaki, H., and Okamoto, T., 1976, Sequence of promoter for coat protein gene of bacteriophage fd, Nature 260: 297.PubMedCrossRefGoogle Scholar
  192. Travers, A., and Burgess, R., 1969, Cyclic reuse of RNA polymerase sigma factor, Nature 222: 537PubMedCrossRefGoogle Scholar
  193. von Hippel, P. H., and McGhee, J. D., 1972, DNA—protein interactions, Annu. Rev. Biochem 41: 231CrossRefGoogle Scholar
  194. Walter, G., Zillig, W., Palm, P., and Fuchs, E., 1967, Initiation of DNA-dependent RNA synthesis and the effect of heparin on RNA polymerase, Eur. J. Biochem 3: 194.PubMedCrossRefGoogle Scholar
  195. Walz, A., and Pirrotta, V., 1975, Sequence of the PR promoter of phage X, Nature 254: 118.PubMedCrossRefGoogle Scholar
  196. Wang, J., 1974, Interaction between twisted DNAs and enzymes: The effect of superhelical turns, J. Mol. Biol 87: 797.PubMedCrossRefGoogle Scholar
  197. Wang, J., Barkley, M., and Bourgeois, S., 1974, Measurements of unwinding of lac operator by repressor, Nature 251: 247.PubMedCrossRefGoogle Scholar
  198. Whitely, H. R., Spiegelman, G. B., Lawrie, J. M., and Hiatt, W. R., 1976, The in vitro transcriptional specificity of RNA polymerase isolated from SP82-infected Bacillus subtilis, in: RNA Polymerase ( R. Losick and M. Chamberlin, eds.), pp. 587–600, Cold Spring Harbor Lab., Cold Spring Harbor, New York.Google Scholar
  199. Williams, R. C., and Chamberlin, M. J., 1977, Electron microscopic studies of transient complexes found between E. coli RNA polymerase holoenzyme and T7 DNA, Proc. Natl. Acad. Sci. U.S.A 74: 3740.PubMedCrossRefGoogle Scholar
  200. Willson, C., Perrin, D., Cohn, M., Jacob, F., and Monod, J., 1964, Non-inducible mutants of the regulator gene in the “lactose” system of Escherichia coli, J. Mol. Biol 8: 582.PubMedCrossRefGoogle Scholar
  201. Wu, F. Y.-H., Nath, K., and Wu, C. -W., 1974, Conformational transition of cyclic adenosine mono-phosphate receptor protein of Escherichia coli. A fluorescent probe study, Biochemistry 13: 2567PubMedCrossRefGoogle Scholar
  202. Wulff, D. L., 1976, Lambda cin-1, a new mutation which enhances lysogenization by bacteriophage lambda, and the genetic structure of the lambda cy region, Genetics 82: 401.PubMedGoogle Scholar
  203. Yanofsky, C., 1976, Regulation of transcription initiation and termination in the control of expression of the tryptophan operon of E. coli, in: Molecular Mechanisms in the Control of Gene Expression ( D. P. Nierlich and W. J. Rutter, eds.), pp. 75–87, Academic Press, New York.Google Scholar
  204. Yanofsky, C., and Soll, L., 1977, Mutations affecting tRNAT“ and its charging and their effect on regulation of transcription termination at the attenuator of the tryptophan operon, J. Mol. Biol 113: 663PubMedCrossRefGoogle Scholar
  205. Yarus, M., 1969, Recognition of nucleic acid sequences, Annu. Rev. Biochem 38: 841.PubMedCrossRefGoogle Scholar
  206. Zillig, W., Fuchs, E., Palm, P., Rabussay, D., and Zechel, K., 1970a, On the different subunits of DNA-dependent RNA polymerase from E. coli and their role in the complex function of the enzyme, in: Lepetit Colloquium on RNA Polymerase, Vol. I ( L. Silvestri, ed.), pp. 151–157, North-Holland, Amsterdam.Google Scholar
  207. Zillig, W., Zechel, K., Rabussay, D., Schachner, M., Sethi, V., Palm, P., Heil, A., and Seifert, W., 1970b, On the role of different subunits of DNA-dependent RNA polymerase from E. coli in the transcription process, Cold Spring Harbor Symp. Quant. Biol 35: 47.CrossRefGoogle Scholar
  208. Zillig, W., Palm, P., and Heil, A., 1976, Function and reassembly of subunits of DNA-dependent RNA polymerase, in: RNA Polymerase ( R. Losick and M. Chamberlin, eds.), pp. 101–125, Cold Spring Harbor Lab., Cold Spring Harbor, New York.Google Scholar
  209. Zubay, G., Schwartz, D., and Beckwith, J., 1970, Mechanism of activation of catabolite-sensitive genes: A positive control system, Proc. Natl. Acad. Sci. U.S.A 66: 104.PubMedCrossRefGoogle Scholar
  210. Zubay, G., Morse, D. E., Schrenk, W. J., and Miller, J. H., 1972, Detection and isolation of the repressor protein for the tryptophan operon of Escherichia coli, Proc. Natl. Acad. Sci. U.S.A 69: 1100.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1979

Authors and Affiliations

  • David Pribnow
    • 1
  1. 1.Department of Molecular, Cellular, and Developmental BiologyUniversity of ColoradoBoulderUSA

Personalised recommendations