Advertisement

Importance of Symmetry and Conformational Flexibility in DNA Structure for Understanding Protein-DNA Interactions

  • Henry M. Sobell
Part of the Biological Regulation and Development book series (BRD, volume 1)

Abstract

During the past few years, there has been a growing realization that two aspects of DNA structure, namely, its symmetry and its conformational flexibility, play important roles in protein-DNA interactions involved in genetic regulation. This chapter reviews evidence along these lines, beginning with our structural studies of drug intercalation (these studies have given direct structural information concerning the roles of symmetry and conformational flexibility in DNA structure in a variety of drug-DNA interactions), enlarging on this theme with a discussion of the nature of DNA breathing and DNA denaturation, and ending with discussions of specific protein-DNA interactions that involve various aspects of DNA symmetry and flexibility—that is, histone-DNA interactions in chromatin, RNA polymerase-promoter recognition, operator-repressor recognition, and so on. No attempt is made to review the wealth of nucleotide sequence information currently available; rather, specific examples of protein-DNA interactions are discussed in detail and these will serve to illustrate the general principles involved.

Keywords

Conformational Flexibility Micrococcal Nuclease Adjacent Base Pair Pancreatic DNase Dyad Axis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bigger, C. H., Murray, K., and Murray, N. E., 1973, Recognition sites in phage X for a restriction endonuclease from Excherichia cou fi- R factor, Nature New Biot 244: 7.Google Scholar
  2. Blattner, F. R., and Dahlberg, J. E., 1972, Distance from a promoter mutation to an RNA synthesis startpoint, Nature New Biol. 237: 232.PubMedCrossRefGoogle Scholar
  3. Brun, F. B., Toulme, J. J., and Helene, C., 1975, Interactions of aromatic residues of proteins with nucleic acids. Fluorescence studies of the binding of oligopeptides containing tryptophan and tyrosine residues to polynucleotides, J. Biol. Chem. 250: 5109.Google Scholar
  4. Burd, J. F., Wartell, R. M., Dogson, J. B., and Wells, R. D., 1975, Transmission of stability (telestability) in deoxyribonucleic acid, J. Biol. Chem. 250: 5109.PubMedGoogle Scholar
  5. Carter, C. W., and Kraut, J., 1974, A proposed model for interaction of polypeptides with RNA, Proc. Natl. Acad. Sci. U.S.A. 71: 283.PubMedCrossRefGoogle Scholar
  6. Chan, H. W., Dodgson, J. B., and Wells, R. D., 1977, Influence of DNA structure on the lactose operator-repressor interaction, Biochemistry 16: 2356.PubMedCrossRefGoogle Scholar
  7. Chiao, Y. C. C., and Krugh, T. R., 1977, Actinomycin D complexes with oligonucleotides as models for the binding of the drug to DNA. Paramagnetic-induced relaxation experiments on drug-nucleic acid complexes, Biochemistry 16: 747.PubMedCrossRefGoogle Scholar
  8. Coleman, J. E., Anderson, R. A., Ratcliffe, R. G., and Armitage, I. M., 1976, Structure of gene 5 protein-oligodeoxynucleotide complexes as determined by 1H, 19F and “P nuclear magnetic resonance, Biochemistry 15: 5419.PubMedCrossRefGoogle Scholar
  9. Crick, F. H. C., 1971, General model for the chromosomes of higher organisms, Nature 234: 25.PubMedCrossRefGoogle Scholar
  10. Crick, F. H. C., and Klug, A., 1975, Kinky helix, Nature 255: 531.CrossRefGoogle Scholar
  11. Crothers, D. M., 1968, Calculation of binding isotherms for heterogeneous polymers, Biopolymers 6: 575.PubMedCrossRefGoogle Scholar
  12. Dickson, R. C., Abelson, J., Barnes, W. M., and Reznikoff, W. S., 1975, Genetic regulation: The lac control region, Science 187: 27.Google Scholar
  13. Durance, M., Maurizot, J. C., Borazan, H. N., and Helene, C., 1975, Interaction of aromatic residues of proteins with nucleic acids. Circular dichroism studies of the binding of oligopeptides to polyadenylic acid, Biochemistry 14: 563.CrossRefGoogle Scholar
  14. Fanning, J. G., 1975, Iodination of Escherichia coli lac repressor. Effect of tyrosine modification on repressor activity, Biochemistry 14: 2512.PubMedCrossRefGoogle Scholar
  15. Finch, J. T., and Klug, A., 1976, Solenoidal model for superstructure in chromatin, Proc. Natl. Acad. Sci. U.S.A. 73: 1897.PubMedCrossRefGoogle Scholar
  16. Finch, J. T., and Klug, A., 1977, X-ray and electron microscope analyses of crystals of nucleosome cores, Cold Spring Harbor Symp. Quant. Biol. 42: 1–9.CrossRefGoogle Scholar
  17. Fuller, F. B., 1971, The writhing number of a space curve, Proc. Natl. Acad. Sci. U.S.A. 86: 815.CrossRefGoogle Scholar
  18. Gabbay, E. J., Adawadkar, P. D., Kapicak, L., Pearce, S., and Wilson, W. D., 1976a, The interaction specificity of peptides with DNA. Evidence for peptide ß-sheet—DNA binding, Biochemistry 15: 152.CrossRefGoogle Scholar
  19. Gabbay, E. J., Adawadkar, P. D., and Wilson, W. D., 1976b, Stereospecific binding of distereomeric peptides to salmon sperm DNA, Biochemistry 15: 146.Google Scholar
  20. Gierer, A., 1966, Model for DNA and protein interactions and the function of the operator, Nature 212: 1480.PubMedCrossRefGoogle Scholar
  21. Gilbert, W., and Maxam, A., 1973, The nucleotide sequence of the lac operator, Proc. Natl. Acad. Sci. U.S.A. 70: 3581.PubMedCrossRefGoogle Scholar
  22. Gilbert, W., Gralla, J Majors, J and Maxam, A., 1975, Lactose operator sequences and the action of lac repressor, in: Protein—Ligand Interactions,pp. 193–210, de Gruyter, Berlin.Google Scholar
  23. Hearst, J., 1977, Cold Spring Harbor Symp. Quant. Biol. 42.Google Scholar
  24. Hedgpeth, J Goodman, H. M., and Boyer, H. W., 1972, The DNA nucleotide sequence restricted by the RI endonuclease, Proc. Natl. Acad. Sci. U.S.A. 69:3448.Google Scholar
  25. Jain, S. C., and Sobell, H. M., 1972, The stereochemistry of actinomycin binding to DNA. I. Refinement and further structural details of the actinomycin—deoxyguanosine crystalline complex, J. Mol. Biol. 68: 1.PubMedCrossRefGoogle Scholar
  26. Jain, S. C., Tsai, C.-C., and Sobell, H. M., 1977, Visualization of drug—nucleic acid interactions at atomic resolution. II. Structure of an ethidium/dinucleoside monophosphate crystalline complex, ethidium:5-iodocytidylyl(3’-5’)guanosine, J. Mol. Biol. 114: 317.PubMedCrossRefGoogle Scholar
  27. Kelly, T. J., and Smith, H. 0., 1970, A restriction enzyme from Hemophillus influenzae. II. Base sequence of the recognition site, J. Mol. Biol. 51: 393.Google Scholar
  28. Kim, S.-H., Church, G. M., and Sussman, J. L., 1977, Secondary structural complementarity between DNA and proteins, Proc. Natl. Acad. Sci. U.S.A. 74: 1458.PubMedCrossRefGoogle Scholar
  29. Krugh, T. R 1974, Sequence specificity in the interaction at actinomycin D with deoxydinucleotides as a model for the binding of the drug to DNA, in: Molecular and Quantum Pharmacology (E. Bergman and B. Pullman, eds.), pp. 465–471, Reidel, Dordrecht, The Netherlands.Google Scholar
  30. Krugh, T. R., 1974, in: Molecular and Quantum Pharmacology (E. Bergman and B. Pullman, eds.), pp. 465–471, Reidel, Dordrecht, The Netherlands.Google Scholar
  31. Krugh, T. R., and Reinhardt, C. G., 1975, Evidence for sequence preferences in the intercalative binding of ethidium bromide to dinucleoside monophosphates, J. Mol. Biol. 97: 133.PubMedCrossRefGoogle Scholar
  32. Krugh, T. R., Wittlin, F. N., and Cramer, S. P., 1975, Ethidium bromide—dinucleotide complexes:Google Scholar
  33. Evidence for intercalation and sequence preferences in binding to double-stranded nucleic acids, Biopolymers 14:197.Google Scholar
  34. Lawrence, J. J., and Daune, M., 1976, Ethidium bromide as a probe of conformational heterogeneity of DNA in chromatin. The role of histone H1, Biochemistry 15: 3301.PubMedCrossRefGoogle Scholar
  35. LePecq, J. B., and Paoletti, C. J., 1967, A fluorescent complex between ethidium bromide and nucleic acids, J. Mol. Biol. 27: 87.PubMedCrossRefGoogle Scholar
  36. LePecq, J. B., and Paoletti, C. J., 1967, A fluorescent complex between ethidium bromide and nucleic acids, J. Mol. Biol. 27: 87.PubMedCrossRefGoogle Scholar
  37. Mahler, H. R., Green, G., Goutarel, R., and Khuong-Huu, Q., 1968, Nucleic acid—small molecule interactions. VII. Further characterization of deoxyribonucleic acid—diamino steroid complexes, Biochemistry 7:1568.Google Scholar
  38. McGhee, J. D., and von Hippel, P. H., 1975a, Formaldehyde as a probe of DNA structure. I. Reaction with exocylic amino groups of DNA bases, Biochemistry 14: 1281.PubMedCrossRefGoogle Scholar
  39. McGhee, J. D., and von Hippel, P. H., 1975b, Formaldehyde as a probe of DNA structure. II. Reaction with endocyclic imino groups of DNA bases, Biochemistry 14: 1297.PubMedCrossRefGoogle Scholar
  40. Olins, D. E., and Olins, A. L., 1974, Spheroid chromatin unit (y bodies), Science 183: 330.PubMedCrossRefGoogle Scholar
  41. Pack, G. R., and Loew, G. H., 1977, The origins of sequence specificity of ethidium nucleic acid intercalation, Int. J. Quant. Chem. Quant. Biol. Symp. 4: 87.Google Scholar
  42. Patel, D. J., 1976, Proton and phosphorous NMR studies of d-CpG(pCpG) n duplexes in solution. Helix coil transition and complex formation with actinomycin D, Biopolymers 15: 533.PubMedCrossRefGoogle Scholar
  43. Pigram, W. J., Fuller, W., and Hamilton, L. D., 1972, Stereochemistry of intercalation: Interaction of daunomycin with DNA, Nature New Biol. 235: 17.PubMedCrossRefGoogle Scholar
  44. Pohl, F. M., and Jovin, T. M., 1972, Salt-induced cooperative conformational change of a synthetic DNA: Equilibrium and kinetic studies with poly(dG-dC), J. Mol. Biol. 67: 375.PubMedCrossRefGoogle Scholar
  45. Pohl, F. M., Jovin, T. M., Baehr, W., and Holbrook, J. J., 1972, Ethidium bromide as a cooperative effector of a DNA structure, Proc. Natl. Acad. Sci. U.S.A. 69: 3805.PubMedCrossRefGoogle Scholar
  46. Pribnow, D., 1975, Nucleotide sequence of an RNA polymerase binding site of an early T7 promoter, Proc. Natl. Acad. Sci. U.S.A. 72: 784.PubMedCrossRefGoogle Scholar
  47. Printz, M. P., and von Hippel, P. H., 1965, Hydrogen exchange studies of DNA structure, Proc. Natl. Acad. Sci. U.S.A. 53: 363.PubMedCrossRefGoogle Scholar
  48. Printz, M. P., and von Hippel, P. H., 1965, Hydrogen exchange studies of DNA structure, Proc. Natl. Acad. Sci. U.S.A. 53: 363.PubMedCrossRefGoogle Scholar
  49. Reinhardt, C. G., 1976, Ph.D. Thesis, Univ. of Rochester, Rochester, New York.Google Scholar
  50. Reinhardt, C. G., 1976, Ph.D. Thesis, Univ. of Rochester, Rochester, New York.Google Scholar
  51. Sakore, T. D., Jain, S. C., Tsai, C.-C., and Sobell, H. M., 1977b, Mutagen—nucleic acid intercalative binding: Structure of a 9-aminoacridine:5-iodocytidylyl-(3’-5’)guanosine crystalline complex, Proc. Natl. Acad. Sci. U.S.A. 74: 188.PubMedCrossRefGoogle Scholar
  52. Sobell, H. M., 1973, Stereochemistry of actinomycin binding to DNA and its implications in molecular biology, in: Progress in Nucleic Acid Research and Molecular Biology, Vol. 13 ( W. E. Cohn and J. N. Davidson, eds.), pp. 153–190, Academic Press, New York.Google Scholar
  53. Sobell, H. M., 1976, Symmetry in nucleic acid structure and its role in protein—nucleic acid interactionsGoogle Scholar
  54. Teitelbaum, H., and Englander, S. W., 1975a, Open states in native polynucleotides. I. Hydrogen- exchange study of adenine-thymine containing double helices, J. Mol. Biol. 92: 55.PubMedCrossRefGoogle Scholar
  55. Teitelbaum, H., and Englander, S. W., 1975b, Open states in native polynucleotides. II. Hydrogen exchange study of guanine-cytosine containing double helices, J. Mol. Biol. 92: 79.PubMedCrossRefGoogle Scholar
  56. Thomas, J. O., and Kornberg, R. D., 1975, An octamer of histones in chromatin and free in solution, Proc. Natl. Acad. Sci. U.S.A. 72: 2626.PubMedCrossRefGoogle Scholar
  57. Travers, A., 1974, RNA polymerase—promoter interactions: Some general principles, Cell 3: 97.PubMedCrossRefGoogle Scholar
  58. Tsai, C.-C., Jain, S. C., and Sobell, H. M., 1975a, X-ray crystallographic visualization of drug—nucleic acid intercalative binding: Structure of an ethidium-dinucleoside monophosphate crystalline complex, ethidium:5-iodouridylyl(3’-5’)adenosine, Proc. Natl. Acad. Sci. U.S.A. 72: 628.PubMedCrossRefGoogle Scholar
  59. Tsai, C.-C., Jain, S. C., and Sobell, H. M., 1975b, Drug—nucleic acid interaction: X-ray crystallographic determination of an ethidium-dinucleoside monophosphate crystalline complex, ethidium:5iodouridylyl(3’-5’)adenosine, Phil. Trans. Roy. Soc. Lond. B 272: 137.Google Scholar
  60. Tsai, C.-C., Jain, S. C., and Sobell, H. M., 1977, Visualization of drug—nucleic acid interactions at atomic resolution. I. Structure of an ethidium-dinucleoside monophosphate crystalline complex, ethidium:5-iodouridylyl(3’-5’)adenosine, J. Mol. Biol. 114: 301.PubMedCrossRefGoogle Scholar
  61. Walz, A., and Pirrotta, V., 1975, Sequence of the PR promoter of phage X, Nature 254: 118.PubMedCrossRefGoogle Scholar
  62. Wang, J. C., 1974, The degree of unwinding of the DNA helix by ethidium. I. Titration of twisted PN2 DNA molecules in alkaline cesium chloride density gradients, J. Mol. Biol. 89: 783.PubMedCrossRefGoogle Scholar
  63. Waring, M. J., 1970, Variation of supercoils in closed circular DNA by binding of antibiotics and drugs: Evidence for molecular models involving intercalation, J. Mol. Biol. 54: 247.Google Scholar
  64. Waring, M. J., and Chisholm, J. W., 1972, Uncoiling of bacteriophage PM2 DNA by binding of steroidal diamines, Biochim. Biophys. Acta 262: 18.Google Scholar
  65. Waring, M. J., and Henley, S. M., 1975, Stereochemical aspects of the interaction between steroidal diamines and DNA, Nucleic Acids Res. 2: 567.Google Scholar
  66. Wells, R. D., and Larson, J. E., 1970, Studies on the binding of actinomycin D to DNA and DNA model polymers, J. Mol. Biol. 49:319.Google Scholar
  67. Worcel, A., 1978, Molecular architecture of the chromatin fiber, Cold Spring Harbor Symp. Quant. Biol. 42: 313–324.PubMedCrossRefGoogle Scholar
  68. Worcel, A., and Benyajati, C., 1977, Higher order coiling of DNA in chromatin, Cell 2: 83.CrossRefGoogle Scholar
  69. Young, M. A., and Krugh, T. R., 1975, Proton magnetic resonance studies of double helical oligonu- cleotides. The effect of base sequence on the stability of deoxydinucleotide dimers, Biochemistry 14: 4841–4847.Google Scholar

Copyright information

© Plenum Press, New York 1979

Authors and Affiliations

  • Henry M. Sobell
    • 1
  1. 1.Department of Chemistry, and Department of Radiation Biology and BiophysicsUniversity of Rochester School of Medicine and DentistryRochesterUSA

Personalised recommendations