Advertisement

Autogenous and Classical Regulation of Gene Expression: A General Theory and Experimental Evidence

  • Michael A. Savageau
Part of the Biological Regulation and Development book series (BRD, volume 1)

Abstract

Control of genetic expression by a constitutively synthesized repressor protein is a central feature of the classical operon model proposed in 1961 by Jacob and Monod (see also Chapter 2). Although this model was originally developed for a specific set of genes in a particular bacterium, its influence quickly spread to all of biology. Jacob and Monod knew well the attractions of their model and warned against its indiscriminant use, but their prophetic words were largely ignored as it became the dominant paradigm for biologists concerned with the normal processes of differentiation, growth, and homeostasis, and such pathological manifestations as infectious diseases, metabolic disorders, and cancer. By any number of criteria the Jacob—Monod model has been one of the most seminal ideas in modern biology.

Keywords

Simian Virus Histone Gene Classical Regulation Threonine Deaminase Functional Effectiveness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adibi, S. A., and Gray, S. J., 1967, Intestinal absorption of essential amino acids in man, Gastroenterology 52: 837–845.PubMedGoogle Scholar
  2. Adibi, S. A., Gray, S. J., and Menden, E., 1967, The kinetics of amino acid absorption and alteration of plasma composition of free amino acids after intestinal perfusion of amino acid mixtures, Am. J. Clin. Nutr. 20: 24–33.PubMedGoogle Scholar
  3. Ambler, R. P., and Meadway, R. J., 1969, Chemical structure of bacterial penicillinases, Nature 222: 2426.CrossRefGoogle Scholar
  4. Anderson, E. S., 1968, The ecology of transferable drug resistance in the enterobacteria, Annu. Rev. Microbiol. 22: 131–180.PubMedCrossRefGoogle Scholar
  5. Arst, H. N., 1976, Integrator gene in Aspergillus nidulans, Nature 262: 231–234.PubMedCrossRefGoogle Scholar
  6. Artz, S. W., and Broach, J. R., 1975, Histidine regulation in Salmonella typhimurium: An activatorattenuator model of gene regulation, Proc. Natl. Acad. Sci. U.S.A. 72: 3453–3457.PubMedCrossRefGoogle Scholar
  7. Bachmann, B. J., Low, K. B., and Taylor, A. L., 1976, Recalibrated linkage map of Escherichia coli K-12, Bacteriol. Rev. 40; 116–167.PubMedGoogle Scholar
  8. Barksdale, L., and Arden, S. B., 1974, Persisting bacteriophage infections, lysogeny and phage conversions, Annu. Rev. Microbiol. 28: 265–299.PubMedCrossRefGoogle Scholar
  9. Beckwith, J. R., and Zipser, D., eds., 1970, The Lactose Operon, Cold Spring Harbor Lab., Cold Spring Harbor, New York.Google Scholar
  10. Berg, D. E., 1974, Genes of phage X essential for klv plasmids, Virology 62: 224–233.PubMedCrossRefGoogle Scholar
  11. Bernhard, H. P., 1976, The control of gene expression in somatic cell hybrids, Int. Rev. Cytol. 47: 289–325.PubMedCrossRefGoogle Scholar
  12. Bertani, L. E., and Bertani, G., 1971, Genetics of P2 and related phages, Adv. Genet. 16: 199–237.PubMedCrossRefGoogle Scholar
  13. Bertrand, K., and Yanofsky, C., 1976, Regulation of transcription termination in the leader region of the tryptophan operon of Escherichia coli involves tryptophan or its metabolic product, J. Mol. Biol. 103: 339–340.PubMedCrossRefGoogle Scholar
  14. Bertrand, K., Korn, L, Lee, F., Platt, T., Squires, C. L, Squires, C., and Yanofsky, C., 1975, New features of the regulation of the tryptophan operon, Science 189: 22–26.PubMedCrossRefGoogle Scholar
  15. Bertrand, K., Squires, C., and Yanofsky, C., 1976, Transcription termination in vivo in the leader region of the tryptophan operon of Escherichia coli, J. Mol. Biol. 103: 319–337.PubMedCrossRefGoogle Scholar
  16. Bihler, I., 1969, Intestinal sugar transport: Ionic activation and chemical specificity, Biochim. Biophys. Acta 183: 169–181.PubMedCrossRefGoogle Scholar
  17. Bloom, F. R., McFall, E., Young, M. C., and Carothers, A. M., 1975, Positive control in the D-serine deaminase system of Escherichia coli K-12, J. Bacteriol. 121: 1092–1101.PubMedGoogle Scholar
  18. Blumenthal, R. M., Reeh, S., and Pedersen, S., 1976, Regulation of transcription factor p and the a subunit of RNA polymerase in Escherichia coli B/r, Proc. Natl. Acad. Sci. U.S.A. 73: 2285–2288.PubMedCrossRefGoogle Scholar
  19. Bollon, A. P., 1974, Fine structure analysis of a eukaryotic multifunctional gene, Nature 250: 630–634.PubMedCrossRefGoogle Scholar
  20. Bollon, A. P., 1975, Regulation of the ilv 1 multifunctional gene in Saccharomyces cerevisiae, Mol. Gen. Genet. 142: 1–12.PubMedGoogle Scholar
  21. Bollon, A. P., and Magee, P. T., 1971, Involvement of threonine deaminase in multivalent repression of the isoleucine—valine pathway in Saccharomyces cerevisiae, Proc. Natl. Acad. Sci. U.S.A. 68: 2169–2172.PubMedCrossRefGoogle Scholar
  22. Bollon, A. P., and Magee, P. T., 1973, Involvement of threonine deaminase in repression of the isoleucine—valine and leucine pathways in Saccharomyces cerevisiae, J. Bacteriol. 113: 1333–1344.PubMedGoogle Scholar
  23. Bourgeois, S., and Pfahl, M., 1976, Repressors, Adv. Protein Chem. 30: 1–99.PubMedCrossRefGoogle Scholar
  24. Brenner, M., and Ames, B. N., 1971, The histidine operon and its regulation, in: Metabolic Regulation, Vol. V ( H. J. Vogel, ed.), pp. 349–387, Academic Press, New York.Google Scholar
  25. Brugge, J. S., and Butel, J. S., 1975, Involvement of the simian virus 40 gene A function in the maintenance of transformation, J. Virol. 15: 619–635.PubMedGoogle Scholar
  26. Bussey, H., and Umbarger, H. E., 1969, Biosynthesis of branched-chain amino acids in yeast: Regulation of synthesis of the enzymes of isoleucine and valine biosynthesis, J. Bacteriol. 98: 623–628.PubMedGoogle Scholar
  27. Butler, W. B., and Mueller, G. C., 1973, Control of histone synthesis in HeLa cells, Biochim. Biophys. Acta 294: 481–496.PubMedGoogle Scholar
  28. Calhoun, D. H., Pierson, D. L., and Jensen, R. A., 1973, The regulation of tryptophan biosynthesis in Pseudomonas aeruginosa, Mol. Gen. Genet. 121: 117–132.PubMedCrossRefGoogle Scholar
  29. Casadaban, M. J., 1976a, Regulation of the regulatory gene for the arabinose pathway, araC, J. Mol. Biol. 104: 557–566.PubMedCrossRefGoogle Scholar
  30. Casadaban, M. J., 1976b, Transposition and fusion of the lac genes to selected promoters in Escherichia coli using bacteriophage lambda and mu, J. Mol. Biol. 104: 541–555.PubMedCrossRefGoogle Scholar
  31. Casadaban, M. J., Silhavy, T. J., Berman, M. L., Shuman, H. A., Sarty, A. V., and Beckwith, J. R., 1977, Construction and use of gene fusions directed by bacteriophage mu insertions, in: DNA Insertion Elements, Plasmids, and Episomes ( A. I. Bukhari, J. A. Shapiro, and S. L. Adhya, eds.), pp. 531–535, Cold Spring Harbor Lab., Cold Spring Harbor, New York.Google Scholar
  32. Chamberlin, M., and Losick, R., eds., 1976, RNA Polymerises, Cold Spring Harbor Lab., Cold Spring Harbor, New York.Google Scholar
  33. Chow, J. Y., Avila, J., and Martin, R. G., 1974, Viral DNA synthesis in cells infected by temperature-sensitive mutant of simian virus 40, J. Virol. 14: 116–124.Google Scholar
  34. Cove, D. J., 1970, Control of gene action in Aspergillus nidulans, Proc. Roy. Soc. Lond. B 176: 267–275.CrossRefGoogle Scholar
  35. Cove, D. J., 1974, Evolutionary significance of autogenous regulation, Nature 251: 256.PubMedCrossRefGoogle Scholar
  36. Cove, D. J., and Pateman, J. A., 1969, Autoregulation of the synthesis of nitrate reductase in Aspergillus nidulans, J. Bacteriol. 97: 1374–1378.PubMedGoogle Scholar
  37. Cozzarelli, N. R., Freedberg, W. B., and Lin, E. C. C., 1968, Genetic control of the L-a-glycerophosphate system in Escherichia coli, J. Mol. Biol. 31: 371–387.PubMedCrossRefGoogle Scholar
  38. Crawford, I. P., and Gunsalus, I. C., 1966, Inducibility of tryptophan synthase in Pseudomonas putida, Proc. Natl. Acad. Sci. U.S.A. 56: 717–724.PubMedCrossRefGoogle Scholar
  39. Cunin, R., Boyen, A., Pouwels, P., Glansdorff, N., and Crabeel, M., 1975, Parameters of gene expression in the bipolar argECBH operon of E. coli K12: The question of translational control, Mol. Gen. Genet. 140: 51–60.PubMedCrossRefGoogle Scholar
  40. Cunin, R., Kelker, N., Boyen, A., Yang, H.-L., Zubay, G., Glansdorff, N., and Maas, W. K., 1976, Involvement of arginine in in vitro repression of transcription of arginine genes C, B and H in Escherichia coli K12, Biochem. Biophys. Res. Commun. 69: 377–382.PubMedCrossRefGoogle Scholar
  41. Datta, D. B., Krämer, C., and Henning, U., 1976, Diploidy for a structural gene specifying a major protein of the outer cell envelope membrane from Escherichia coli K-12, J. Bacteriol. 128: 834–841.PubMedGoogle Scholar
  42. Davidson, R. L., 1974, Gene expression in somatic cell hybrids, Annu. Rev. Genet. 8: 195–218.PubMedCrossRefGoogle Scholar
  43. Davies, J. E., and Rownd, R., 1972, Transmissible multiple drug resistance in Enterobacteriaceae, Science 176: 758–768.PubMedCrossRefGoogle Scholar
  44. Davis, B. D., 1961, The teleonomic significance of biosynthetic control mechanisms, Cold Spring Harbor Symp. Quant. Biol. 26: 1–10.PubMedCrossRefGoogle Scholar
  45. Davis, F. M., and Adelberg, E. A., 1973, Use of somatic cell hybrids for analysis of the differentiated state, Bacteriol. Rev. 37: 197–214.PubMedGoogle Scholar
  46. de Crombrugghe, B., Chen, B., Anderson, W., Nissley, P., Gottesman, M., and Pastan, I., 1971, Lac DNA, RNA polymerase and cyclic AMP receptor protein, cyclic AMP, lac repressor and inducer are the essential elements for controlled lac transcription, Nature New Biol. 231: 139–142.Google Scholar
  47. DeMoss, R. D., and Moser, K., 1969, Tryptophanase in diverse bacterial species, J. Bacteriol. 98: 167–171.PubMedGoogle Scholar
  48. Dennis, P. P., and Nomura, M., 1975a, Stringent control of the transcriptional activities of ribosomal protein genes in E. coli, Nature 255: 460–465.PubMedCrossRefGoogle Scholar
  49. Dennis, P. P., and Nomura, M., 1975b, Regulation of the expression of ribosomal protein genes in Escherichia coli, J. Mol. Biol. 97: 61–76.PubMedCrossRefGoogle Scholar
  50. de Robichon-Szulmajster, H., and Surdin-Kerjan, Y., 1971, Nucleic acid and protein synthesis in yeasts: Regulation of synthesis and activity, in: The Yeasts, Vol. 2 ( A. H. Rose and J. S. Harrison, eds.), pp. 335–418, Academic Press, New York.Google Scholar
  51. Dottin, R. P., Cutler, L. S., and Pearson, M. L., 1975, Repression and autogenous stimulation in vitro by bacteriophage lambda repressor, Proc. Natl. Acad. Sci. U.S.A. 72: 804–808.PubMedCrossRefGoogle Scholar
  52. Dubnau, D. A., and Pollock, M. R., 1965, Genetics of Bacillus licheniformis penicillinase: A preliminary analysis from studies on mutation and inter-strain and intra-strain transformations, J. Gen. Microbiol. 41: 7–21.PubMedGoogle Scholar
  53. Englesberg, E., and Wilcox, G., 1974, Regulation: Positive control, Annu. Rev. Genet. 8: 219–242.CrossRefGoogle Scholar
  54. Eron, L., and Block, R., 1971, Mechanism of initiation and repression of in vitro transcription of the lac operon of Escherichia coli, Proc. Natl. Acad. Sci. U.S.A. 68: 1828–1832.PubMedCrossRefGoogle Scholar
  55. Errington, L., Glass, R., Hayward, R., and Scaife, J., 1974, Structure and orientation of an RNA operon in Escherichia coli, Nature 249: 519–522.PubMedCrossRefGoogle Scholar
  56. Felsenfeld, G., 1975, String of pearls, Nature 257: 177–178.CrossRefGoogle Scholar
  57. Finch, J. T., and Klug, A., 1976, Solenoidal model for superstructure in chromatin, Proc. Natl. Acad. Sci. U.S.A. 73: 1897–1901.PubMedCrossRefGoogle Scholar
  58. Finch, L. R., and Hird, F. J. R., 1960, The uptake of amino acids by isolated segments of rat intestine. II. A survey of affinity for uptake from rates of uptake and competition for uptake, Biochim. Biophys. Acta 43: 278–287.PubMedCrossRefGoogle Scholar
  59. Folkmanis, A., Takeda, Y., Simuth, J., Gussin, G., and Echols, H., 1976, Purification and properties of a DNA-binding protein with characteristics expected for the Cro protein of bacteriophage X, a repressor essential for lytic growth, Proc. Natl. Acad. Sci. U.S.A. 73: 2249–2253.PubMedCrossRefGoogle Scholar
  60. Foor, F., Janssen, K. A., and Magasanik, B., 1975, Regulation of synthesis of glutamine synthetase by adenylylated glutamine synthetase, Proc. Natl. Acad. Sci. U.S.A. 72: 4844–4848.PubMedCrossRefGoogle Scholar
  61. Fraenkel, D. G., and Vinopal, R. T., 1973, Carbohydrate metabolism in bacteria, Annu. Rev. Microbiol. 27: 69–100.CrossRefGoogle Scholar
  62. Franklin, T. J., 1967, Resistance of Escherichia coli to tetracyclines: Changes in permeability to tetracyclines in Escherichia coli bearing transferable resistance factors, Biochem. J. 105: 371–378.PubMedGoogle Scholar
  63. Franklin, T. J., and Higginson, B., 1970, Active accumulation of tetracycline by Escherichia coli, Biochem. J. 116: 287–297.PubMedGoogle Scholar
  64. Gibson, Q. H., and Wiseman, G., 1951, Selective absorption of stereo-isomers of amino acids from loops of the small intestine of the rat, Biochem. J. 48: 426–429.PubMedGoogle Scholar
  65. Gilbert, W., and Müller-Hill, B., 1966, Isolation of the lac repressor, Proc. Natl. Acad. Sci. U.S.A. 56: 1891–1898.PubMedCrossRefGoogle Scholar
  66. Gilbert, W., Gralla, J., Majors, J., and Maxam, A., 1975, Lactose operator sequences and the action of lac repressor, in: Protein—Ligand Interactions (H. Sund and G. Blauer, eds.), pp. 193–206, de Gruyter, Berlin.Google Scholar
  67. Ginsburg, A., and Stadtman, E. R., 1973, Regulation of glutamine synthetase in Escherichia coli, in: The Enzymes of Glutamine Metabolism ( S. Prusiner and E. R. Stadtman, eds.), pp. 9–43, Academic Press, New York.Google Scholar
  68. Glass, R. E., Goman, M., Errington, L., and Scaife, J., 1975, Induction of RNA polymerase synthesis in Escherichia coli. Mol. Gen. Genet. 143: 79–83.Google Scholar
  69. Gold, L., O’Farrell, P. Z., and Russel, M., 1976, Regulation of gene 32 expression during bacteriophage T4 infection of Escherichia coli, J. Biol. Chem. 251: 7251–7262.PubMedGoogle Scholar
  70. Goldberger, R. F., 1974, Autogenous regulation of gene expression, Science 183: 810–816.PubMedCrossRefGoogle Scholar
  71. Goldberger, R. F., and Deeley, R. G., 1976, Autogenous regulation of gene expression, in: Regulatory Biology U. C. Copeland and G. A. Marzluf, eds.), pp. 178–195, Ohio State Univ. Press, Columbus.Google Scholar
  72. Goldberger, R. F., and Kovach, J. S., 1972, Regulation of histidine biosynthesis in Salmonella typhimurium, Curr. Top. Cell. Regal. 5: 285–308.Google Scholar
  73. Graf, L. H., Jr., McRoberts, J. A., Harrison, T. M., and Martin, D. W., Jr., 1976, Increased PRPP synthetase activity in cultured rat hepatoma cells containing mutations in the hypoxanthineguanine phosphoribosyltransferase gene, J. Cell. Physiol. 88: 331–342.PubMedCrossRefGoogle Scholar
  74. Gross, S. R., 1969, Genetic regulatory mechanisms in the fungi, Annu. Rev. Genet. 3: 395–424.CrossRefGoogle Scholar
  75. Hagen, D. C., and Magasanik, B., 1973, Isolation of the self-regulating repressor protein of the hut operons of Salmonella typhimurium, Proc. Natl. Acad. Sci. U.S.A. 70: 808–812.PubMedCrossRefGoogle Scholar
  76. Hagen, D. C., and Magasanik, B., 1976, Deoxyribonucleic acid-binding studies on the hut repressor and mutant forms of the hut repressor of Salmonella typhimurium, J. Bacteriol. 127: 837–847.PubMedGoogle Scholar
  77. Hatfield, G. W., and Burns, R. O., 1970, The specific binding of leucyl transfer RNA to an immature form of L-threonine deaminase: Its implication in repression, Proc. Natl. Acad. Sci. U.S.A. 66: 1027–1035.PubMedCrossRefGoogle Scholar
  78. Hayward, R. S., Tittawella, I. P. B., and Scaife, J. G., 1973, Evidence for specific control of RNA polymerase synthesis in Escherichia coli, Nature New Biol. 243: 6–9.PubMedCrossRefGoogle Scholar
  79. Hayward, R. S., Sustin, S. J., and Scaife, J. G., 1974, The effect of gene dosage on the synthesis and stability of RNA polymerase subunits in Escherichia coli. Mol. Gen. Genet. 131: 173–180.Google Scholar
  80. Herskowitz, I., 1973, Control of gene expression in bacteriophage lambda, Annu. Rev. Genet. 7: 289–324.PubMedCrossRefGoogle Scholar
  81. Hiraga, S., and Yanofsky, C., 1972, Normal repression in a deletion mutant lacking almost the entire operator-proximal gene of the tryptophan operon of E. coli, Nature New Biol. 237: 47–49.PubMedCrossRefGoogle Scholar
  82. Hirsh, J., and Schleif, R., 1976, Electron microscopy of gene regulation: The L-arabinose operon, Proc. Natl. Acad. Sci. U.S.A. 73: 1518–1522.PubMedCrossRefGoogle Scholar
  83. Hofnung, M., 1974, Divergent operons and the genetic structure of the maltose B region in Escherichia col K12, Genetics 76: 169–184.PubMedGoogle Scholar
  84. Hofnung, M., and Schwartz, M., 1971, Mutations allowing growth on maltose of Escherichia coli K12 strains with a deleted malT gene, Mol. Gen. Genet. 112: 117–132.PubMedCrossRefGoogle Scholar
  85. Imsande, J., 1973, Repressor and antirepressor in the regulation of staphylococcal penicillinase synthesis, Genetics 75: 1–17.PubMedGoogle Scholar
  86. Imsande, J., and Lilleholm, J. L., 1976, Characterization of mutations in the penicillinase operon of Staphylococcus aureus, Mol. Gen. Genet. 147: 23–27.PubMedCrossRefGoogle Scholar
  87. Imsande, J., Zyskind, J. W., and Mile, I., 1972, Regulation of staphylococcal penicillinase synthesis, J. Bacteriol. 109: 122–133.PubMedGoogle Scholar
  88. Ishihama, A., Taketo, M., Saitoh, T., and Fukuda, R., 1976, Control of formation of RNA polymerase in Escherichia coli, in: RNA Polymerases ( M. Chamberlin and R. Losick, eds.), pp. 485–502, Cold Spring Harbor Lab., Cold Spring Harbor, New York.Google Scholar
  89. Isturiz, T., and Wolf, R. E., Jr., 1975, In vitro synthesis of a constitutive enzyme of Escherichia coli, 6phosphogluconate dehydrogenase, Proc. Natl. Acad. Sci. U.S.A. 72: 4381–4384.CrossRefGoogle Scholar
  90. Jackson, E. N., and Yanofsky, C., 1973, The region between the operator and the first structural gene of the tryptophan operon of Escherichia coli may have a regulatory function, J. Mol. Biol. 76: 89–101.PubMedCrossRefGoogle Scholar
  91. Jackson, V., Granner, D., and Chalkley, R., 1976, Deposition of histone onto the replicating chromosome: Newly synthesized histone is not found near the replication fork, Proc. Natl. Acad. Sci. U.S.A. 73: 2266–2269.PubMedCrossRefGoogle Scholar
  92. Jacob, F., and Monod, J., 1961, Genetic regulatory mechanisms in the synthesis of proteins, J. Mol. Biol. 3: 318–356.PubMedCrossRefGoogle Scholar
  93. Jacob, F., Brenner, S., and Cuzin, F., 1963, On the regulation of DNA replication in bacteria, Cold Spring Harbor Symp. Quant. Biol. 28: 329–348.CrossRefGoogle Scholar
  94. Jones-Mortimer, M. C., 1968, Positive control of sulphate reduction in Escherichia coli: The nature of the pleiotropic cysteineless mutants of E. coli K12, Biochem. J. 110: 597–602.PubMedGoogle Scholar
  95. Kasai, T., 1974, Regulation of the expression of the histidine operon in Salmonella typhimurium, Nature 249: 523–527.PubMedCrossRefGoogle Scholar
  96. Kelker, N., and Eckhardt, T., 1977, Regulation of argA operon expression in Escherichia coli K-12: Cell-free synthesis of beta-galactosidase under argA control, J. Bacteriol. 132: 67–72.PubMedGoogle Scholar
  97. Kelker, N. E., Maas, W. K., Yang, H.-L., and Zubay, G., 1976, In vitro synthesis and repression of arginino-succinase in Escherichia coli K12; partial purification of the arginine repressor, Mol. Gen. Genet. 144: 17–20.Google Scholar
  98. Kelleher, R. J., and Heggeness, M., 1976, Repression of diaminopimelic acid decarboxylase in Escherichia coli: Gene dosage effects and escape synthesis, J. Bacteriol. 125: 376–378.PubMedGoogle Scholar
  99. Kelly, L. E., and Brammar, W. J., 1973a, A frameshift mutation that elongates the penicillinase protein of Bacillus licheniforrnis, J. Mol. Biol. 80: 135–147.PubMedCrossRefGoogle Scholar
  100. Kelly, L. E., and Brammar, W. J., 1973b, The polycistronic nature of the penicillinase structural and regulatory genes in Bacillus licheniformis, J. Mol. Biol. 80: 149–154.PubMedCrossRefGoogle Scholar
  101. Khoury, G., Howley, P., Nathans, D., and Martin, M., 1975, Post-transcriptional selection of simian virus 40–specific RNA, J. Virol. 15: 433–437.PubMedGoogle Scholar
  102. Kimura, G., and Itagaki, A., 1975, Initiation and maintenance of cell transformation by simian virus 40: A viral genetic property, Proc. Natl. Acad. Sci. U.S.A. 72: 673–677.PubMedCrossRefGoogle Scholar
  103. King, J., and Casjens, S., 1974, Catalytic head assembling protein in virus morphogenesis, Nature 251: 112–119.PubMedCrossRefGoogle Scholar
  104. King, J., Botstein, D., Casjens, S., Earnshaw, W., Harrison, S., and Lenk, E., 1976, Structure and assembly of the capsid of bacteriophage P22, Phil. Trans. Roy. Soc. Lond. B 276: 37–49.CrossRefGoogle Scholar
  105. Kirschbaum, J., and Scaife, J., 1974, Evidence for a transducing phage carrying the genes for the ß and ß’ subunits of Escherichia coli RNA polymerase, Mol. Gen. Genet. 132: 193–201.PubMedCrossRefGoogle Scholar
  106. Kirschbaum, J. B., Claeys, I. V., Nasi, S., Molholt, B., and Miller, J. H., 1975, Temperature-sensitive RNA polymerise mutants with altered subunit synthesis and degradation, Proc. Natl. Acad. Sci. U.S.A. 72: 2375–2379.PubMedCrossRefGoogle Scholar
  107. Kleinsmith, L. J., Stein, J. L., and Stein, G. S., 1976, Dephosphorylation of nonhistone proteins specifically alters the pattern of gene transcription in reconstituted chromatin, Proc. Natl. Acad. Sci. U.S.A. 73: 1174–1178.PubMedCrossRefGoogle Scholar
  108. Kline, E. L., Brown, C. S., Coleman, W. G., Jr., and Umbarger, H. E., 1974, Regulation of isoleucinevaline biosynthesis in an iIvDAC deletion strain of Escherichia coli K-12, Biochem. Biophys. Res. Commun. 57: 1144–1151.PubMedCrossRefGoogle Scholar
  109. Korn, L. J., and Yanofsky, C., 1976, Polarity suppressors increase expression of the wild-type tryptophan operon of Escherichia coli, J. Mol. Biol. 103: 395–409.PubMedCrossRefGoogle Scholar
  110. Kornberg, R. D., and Thomas, J. O., 1974, Chromatin structure: Oligomers of the histones, Science 184: 865–868.PubMedCrossRefGoogle Scholar
  111. Kredich, N. M., 1971, Regulation of L-cysteine biosynthesis in Salmonella typhimurium I. Effects of growth on varying sulfur sources and O-acetyl-L-serine on gene expression, J. Biol. Chem. 246: 3474–3484.PubMedGoogle Scholar
  112. Krisch, H. M., Bolle, A., and Epstein, R. H., 1974, Regulation of the synthesis of bacteriophage T4 gene 32 protein, J. Mol. Biol. 88: 89–104.PubMedCrossRefGoogle Scholar
  113. Krzyzek, R. A., and Rogers, P., 1976a, Dual regulation by arginine of the expression of the Escherichia coli argECBH operon, J. Bacteriol. 126: 348–364.Google Scholar
  114. Krzyzek, R. A., and Rogers, P., 1976b, Effect of arginine on the stability and size of argECBH messenger ribonucleic acid in Escherichia coil’, J. Bacteriol. 126: 365–376.PubMedGoogle Scholar
  115. Lai, C.-J., and Weisblum, B., 1971, Altered methylation of ribosomal RNA in an erythromycin-resistant strain of Staphylococcus aureus, Proc. Natl. Acad. Sci. U.S.A. 68: 856–860.PubMedCrossRefGoogle Scholar
  116. Lai, C.-J. Weisblum, B., Fahnestock, S. R., and Nomura, M., 1973a, Alteration of 23S ribosomal RNA and erythromycin-induced resistance to lincomycin and spiramycin in Staphylococcus aureus, J. Mol. Biol. 74: 67–72.Google Scholar
  117. Lai, C.-J., Dahlberg, J. E., and Weisblum, B., 1973b, Structure of an inducibly methylatable nucleotide sequence in 23S ribosomal ribonucleic acid from erythromycin-resistant Staphylococcus aureus, Biochemistry 12: 457–460.PubMedCrossRefGoogle Scholar
  118. Lee, F., Squires, C. L., Squires, C., and Yanofsky, C., 1976, Termination of transcription in vitro in the Escherichia coli tryptophan operon leder region, J. Mol. Biol. 103: 383–393.PubMedCrossRefGoogle Scholar
  119. Lee, N., Wilcox, G., Gielow, W., Arnold, J., Cleary, P., and Englesberg, E., 1974, In vitro activation of the transcription of araBAD operon by araC activator, Proc. Natl. Acad. Sci. U.S.A. 71: 634–638.Google Scholar
  120. Levine, M., 1972, Replication and lysogeny with phage P22 in Salmonella typhimurium, Curr. Top. Microbiol. Immunol. 58: 135–156.PubMedCrossRefGoogle Scholar
  121. Levinthal, M., Williams, L S, Levinthal, M., and Umbarger, H. E., 1973, Role of threonine deaminase in the regulation of isoleucine and valine biosynthesis, Nature New Biol. 246: 65–68.PubMedCrossRefGoogle Scholar
  122. Levy, S. B., and McMurry, L., 1974, Detection of an inducible membrane protein associated with Rfactor-mediated tetracycline resistance, Biochem. Biophys. Res. Commun. 56: 1060–1068.PubMedCrossRefGoogle Scholar
  123. Lindberg, M., and Novick, R. P., 1973, Plasmid-specific transformation in Staphylococcus aureus, J. Bacteriol. 115: 139–145.PubMedGoogle Scholar
  124. Magasanik, B., Privai, M. J., Brenchley, J. E., Tyler, B. M., DeLeo, A. B., Streicher, S. L., Bender, R. A., and Paris, C. G., 1974, Glutamine synthetase as a regulator of enzyme synthesis, Curr. Top. Cell. Regul. 8: 119–138.PubMedGoogle Scholar
  125. Magee, P. T., and Hereford, L. M., 1969, Multivalent repression of isoleucine—valine biosynthesis in Saccharomyces cerevisiae, J. Bacteriol. 98: 857–862.PubMedGoogle Scholar
  126. Manteuil, S., and Girard, M., 1974, Inhibitors of DNA synthesis: Their influence on the replication and transcription of simian virus 40 DNA, Virology 60: 438–454.PubMedCrossRefGoogle Scholar
  127. Martin, R. G., and Chou, J. Y., 1975, Simian virus 40 functions required for the establishment and maintenance of malignant transformation, J. Virol. 15: 599–612.PubMedGoogle Scholar
  128. Matsubara, K., 1976, Genetic structure and regulation of a replicon of plasmid Mv, J. Mol. Biol. 102: 427–439.PubMedCrossRefGoogle Scholar
  129. Matsubara, K., and Kaiser, A. D., 1968, klv: An autonomously replicating DNA fragment, Cold Spring Harbor Symp. Quant. Biol. 33: 769–775.Google Scholar
  130. Maurer, R., and Crawford, I. P., 1971, New regulatory mutation affecting some of the tryptophan genes in Pseudomonas putida, J. Bacteriol. 106: 331–338.PubMedGoogle Scholar
  131. McFall, E., and Bloom, F. R., 1971, Catabolite repression in the n-serine deaminase system of Escherichia coli K-12, J. Bacteriol. 105: 241–248.PubMedGoogle Scholar
  132. McGeoch, D., McGeoch, J., and Morse, D., 1973, Synthesis of tryptophan operon RNA in a cell-free system, Nature New Biol. 245: 137–140.PubMedGoogle Scholar
  133. McLaughlin, C. A., Magee, P. T., and Hartwell, L. H., 1969, Role of isoleucyl-transfer ribonucleic add synthetase in ribonucleic acid synthesis and enzyme repression in yeast, J. Bacteriol. 100: 579–584.PubMedGoogle Scholar
  134. Meyer, B. J., Kleid, D. G., and Ptashne, M., 1975, X repressor turns off transcription of its own gene, Proc. Natl. Acad. Sci. U.S.A. 72: 4785–4789.PubMedCrossRefGoogle Scholar
  135. Meyers, M., Blasi, F., Bruni, C. B., Deeley, R. G., Kovach, J. S., Levinthal, M., Mullinix, K. P., Vogel, T., and Goldberger, R. F., 1975a, Specific binding of the first enzyme for histidine biosynthesis to the DNA of the histidine operon, Nucleic Acids Res. 2: 2021–2036.PubMedCrossRefGoogle Scholar
  136. Meyers, M., Levinthal, M., and Goldberger, R. F., 1975b, Trans-recessive mutation in the first structural gene of the histidine operon that results in constitutive expression of the operon, J. Bacteriol. 124: 1227–1235.PubMedGoogle Scholar
  137. Miller, S. L., and Orgel, L. E., 1974, The Origins of Life on the Earth, Prentice-Hall, Englewood Cliffs, New Jersey.Google Scholar
  138. Mitsuhashi, S., 1971, Transferable Drug Resistance Factor R, University Park Press, Baltimore, Maryland.Google Scholar
  139. Morse, D. E., and Morse, A. N. C., 1976, Dual-control of the tryptophan operon is mediated by both tryptophanyl-tRNA synthetase and the repressor, J. Mol. Biol. 103: 209–226.PubMedCrossRefGoogle Scholar
  140. Müller-Hill, B., and Kania, J., 1974, Lac repressor can be fused to ß-galactosidase, Nature 249: 561–563.Google Scholar
  141. Nakamura, Y., and Yura, T., 1975, Evidence for a positive regulation of RNA polymerase synthesis in Escherichia coli, J. Mol. Biol. 97: 621–642.PubMedCrossRefGoogle Scholar
  142. Nakanishi, S., Adhya, S., Gottesman, M. E., and Pastan, I., 1973, In vitro repression of the transcription of gal operon by purified gal repressor, Proc. Natl. Acad. Sci. U.S.A. 70: 334–338.Google Scholar
  143. Nissley, S. P., Anderson, W. B., Gottesman, M. E., Perlman, R. L., and Pastan, I., 1971, In vitro transcription of the gal operon requires cyclic adenosine monophosphate and cyclic adenosine monophosphate receptor protein, J. Biol. Chem. 246: 4671–4678.Google Scholar
  144. Nixon, S. E., and Mawer, G. E., 1970, The digestion and absorption of protein in man 2. The form in which digested protein is absorbed, Br. J. Nutr. 24: 241–258.PubMedCrossRefGoogle Scholar
  145. Novick, A., McCoy, J. M., and Sadler, J. R., 1965, The noninducibility of repressor formation, J. Mol. Biol. 12: 328–330.PubMedCrossRefGoogle Scholar
  146. Osborn, M., and Weber, K., 1975, Simian virus 40 gene A function and maintenance of transformation, J. Virol. 15: 636–644.PubMedGoogle Scholar
  147. Pannekoek, H., Brammar, W. J., and Pouwels, P. H., 1975, Punctuation of transcription in vitro of the tryptophan operon of Escherichia coli: A novel type of control of transcription, Mol. Gen. Genet. 136: 199–214.PubMedCrossRefGoogle Scholar
  148. Parada, J. L., and Magasanik, B., 1975, Expression of the hut operons of Salmonella typhimurium in Klebsiella aerogenes and in Escherichia coli, J. Bacteriol. 124: 1263–1268.PubMedGoogle Scholar
  149. Park, W. D., Stein, J. L., and Stein, G. S., 1976, Activation of in vitro histone gene transcription from HeLa S3 chromatin by S-phase nonhistone chromosomal proteins, Biochemistry 15: 3296–3300.PubMedCrossRefGoogle Scholar
  150. Pateman, J. A., Cove, D. J., Rever, B. M., and Roberts, D. B., 1964, A common co-factor for nitrate reductase and xanthine dehydrogenase which also regulates the synthesis of nitrate reductase, Nature 201: 58–60.PubMedCrossRefGoogle Scholar
  151. Pateman, J. A., Rever, B. M., and Cove, D. J., 1967, Genetic and biochemical studies of nitrate reduction in Aspergillus nidulans, Biochem. J. 104: 103–111.PubMedGoogle Scholar
  152. Phillips, D. M. P., ed., 1971, Histones and Nucleohistones, Plenum Press, New York.Google Scholar
  153. Pledger, W. J., and Umbarger, H. E., 1973, Isoleucine and valine metabolism in Escherichia coli. XXII. A pleiotropic mutation affecting induction of isomeroreductase activity, J. Bacterial. 114: 195–207.Google Scholar
  154. Pouwels, P. H., and Pannekoek, H., 1976, A transcriptional barrier in the regulatory region of the tryptophan operon of Escherichia coli: Its role in the regulation of repressor-independent RNA synthesis, Mol. Gen. Genet. 149: 255–265.PubMedCrossRefGoogle Scholar
  155. Pouwels, P. H., and van Rotterdam, J., 1975, In vitro synthesis of enzymes of the tryptophan operon of Escherichia coli: Evidence for positive control of transcription, Mol. Gen. Genet. 136: 215–226.Google Scholar
  156. Power, J., 1967, The L-rhamnose genetic system in Escherichia coli K-12, Genetics 55: 557–568.PubMedGoogle Scholar
  157. Proctor, A. R., and Crawford, L. P., 1975, Autogenous regulation of the inducible tryptophan synthase of Pseudomonas putida, Proc. Natl. Acad. Sci. U.S.A. 72: 1249–1253.PubMedCrossRefGoogle Scholar
  158. Proctor, A. R., and Crawford, I. P., 1976, Evidence for autogenous regulation of Pseudomonas putida tryptophan synthase, J. Bacteriol. 126: 547–549.PubMedGoogle Scholar
  159. Ptashne, M., 1971, Repressor and its action, in: The Bacteriophage Lambda ( A. D. Hershey, ed.), pp. 221–237, Cold Spring Harbor Lab., Cold Spring Harbor, New York.Google Scholar
  160. Ptashne, M., Backman, K., Humayun, M. Z., Jeffrey, A., Maurer, R., Meyer, B., and Sauer, R. T., 1976, Autoregulation and function of a repressor in bacteriophage lambda, Science 194: 156–161.PubMedCrossRefGoogle Scholar
  161. Ratner, D., 1976, Evidence that mutations in the suA polarity suppressing gene directly affect termination factor rho, Nature 259: 151–153.PubMedCrossRefGoogle Scholar
  162. Ratzkin, B., Arfin, S. M., and Umbarger, H. E., 1972, Isoleucine and valine metabolism in Escherichia coli. XVIII. The induction of acetohydroxy acid isomeroreductase, J. Bacteriol. 112: 131–141.PubMedGoogle Scholar
  163. Reanney, D., 1976, Extrachromosomal elements as possible agents of adaptation and development, Bacteriol. Rev. 40: 552–590.PubMedGoogle Scholar
  164. Reed, S. I., Stark, G. R., and Alwine, J. C., 1976, Autoregulation of simian virus 40 gene A by T antigen, Proc. Natl. Acad. Sci. U.S.A. 73: 3083–3087.PubMedCrossRefGoogle Scholar
  165. Reichardt, L. F., 1975, Control of bacteriophage lambda repressor synthesis: Regulation of the maintenance pathway by the cro and cl products, J. Mol. Biol. 93: 289–309.PubMedCrossRefGoogle Scholar
  166. Reznikoff, W. S., 1972, The operon revisited, Annu. Rev. Genet. 6: 133–156.PubMedCrossRefGoogle Scholar
  167. Reznikoff, W. S., Winter, R. B., and Hurley, C. K., 1974, The location of the repressor binding sites in the lac operon, Proc. Natl. Acad. Sci. U.S.A. 71: 2314–2318.PubMedCrossRefGoogle Scholar
  168. Richmond, M. H., 1965, Dominance of the inducible state in strains of Staphylococcus aureus containing two distinct penicillinase plasmids, J. Bacteriol. 90: 370–374.PubMedGoogle Scholar
  169. Roberts, J. W., 1969, Termination factor for RNA synthesis, Nature 224: 1168–1174.PubMedCrossRefGoogle Scholar
  170. Roberts, J. W., 1976, Transcription termination and its control in E. coli, in: RNA Polymerases ( M. Chamberlin and R. Losick, eds.), pp. 247–271, Cold Spring Harbor Lab., Cold Spring Harbor, New York.Google Scholar
  171. Rose, J. K., Squires, C. L., Yanofsky, C., Yang, H.-L., and Zubay, G., 1973, Regulation of in vitro transcription of the tryptophan operon by purified RNA polymerase in the presence of partially purified repressor and tryptophan, Nature New Biol. 245: 133–137.PubMedCrossRefGoogle Scholar
  172. Rothman-Denes, L., and Martin, R. G., 1971, Two mutations in the first gene of the histidine operon of Salmonella typhimurium affecting control, J. Bacteriol. 106: 227–237.PubMedGoogle Scholar
  173. Rownd, R., and Mickel, S., 1971, Dissociation and reassociation of RTF and r-determinants of the R-factor NRI in Proteus mirabilis, Nature New Biol. 234: 40–43.PubMedCrossRefGoogle Scholar
  174. Russel, M., 1973, Control of bacteriophage T4 DNA polymerase synthesis, J. Mol. Biol. 79: 83–94.PubMedCrossRefGoogle Scholar
  175. Russel, M., Gold, L., Morrissett, H., and O’Farrell, P. Z., 1976, Translational, autogenous regulation of gene 32 expression during bacteriophage T4 infection, J. Biot Chem. 251: 7263–7270.Google Scholar
  176. Sachithanandam, S., Lowery, D. L., and Saz, A. K., 1974, Endogeneous, spontaneous formation of beta-lactamase in Staphylococcus aureus, Antimicrob. Ag. Chemother. 6: 763–769.Google Scholar
  177. Savageau, M. A., 1974a, Genetic regulatory mechanisms and the ecological niche of Escherichia coli, Proc. Natl. Acad. Sci. U.S.A. 71: 2453–2455.PubMedCrossRefGoogle Scholar
  178. Savageau, M. A., 1974b, Comparison of classical and autogenous systems of regulation in inducible operons, Nature 252: 546–549.PubMedCrossRefGoogle Scholar
  179. Savageau, M. A., 1975, Significance of autogenously regulated and constitutive synthesis of regulatory proteins in repressible biosynthetic systems, Nature 258: 208–214.PubMedCrossRefGoogle Scholar
  180. Savageau, M. A., 1976, Biochemical Systems Analysis: A Study of Function and Design in Molecular Biology, Addison-Wesley, Reading, Massachusetts.Google Scholar
  181. Scott, J. R., 1970, Clear plaque mutants of phage PI, Virology 41: 66–71.PubMedCrossRefGoogle Scholar
  182. Scott, J. F., Roth, J. R., and Artz, S. W., 1975, Regulation of histidine operon does not require hisG enzyme, Proc. Natl. Acad. Sci. U.S.A. 72: 5021–5025.PubMedCrossRefGoogle Scholar
  183. Seale, R. L., 1976, Temporal relationships of chromatin protein synthesis, DNA synthesis, and assembly of deoxyribonucleoprotein, Proc. Natl. Acad. Sci. U.S.A. 73: 2270–2274.PubMedCrossRefGoogle Scholar
  184. Shaw, W. V., 1974, Genetics and enzymology of chloramphenicol resistance, Biochem. Soc. Trans. 2: 834–838.Google Scholar
  185. Sherratt, D. J., and Collins, J. F., 1973, Analysis by transformation of penicillinase system in Bacillus licheniformis, J. Gen. Microbiol. 76: 217–230.PubMedGoogle Scholar
  186. Shimizu, N., Shimizu, Y., Fujimura, F. K., and Hayashi, M., 1974, Repression of tryptophan operon RNA synthesis by trp repressor in an in vitro coupled transcription—translation system, FEBS Lett. 40: 80–83.PubMedCrossRefGoogle Scholar
  187. Silhavy, T. J., Casadaban, M. J., Shuman, H. A., and Beckwith, J. R., 1976, Conversion of f3galactosidase to a membrane-bound state by gene fusion, Proc. Natl. Acad. Sci. U.S.A. 73: 3423–3427.PubMedCrossRefGoogle Scholar
  188. Smith, G. R., and Magasanik, B., 1971, Nature and self-regulated synthesis of the repressor of the hut operons in Salmonella typhimurium, Proc. Natl. Acad. Sci. U.S.A. 68: 1493–1497.PubMedCrossRefGoogle Scholar
  189. Smith, J. M., Smolin, D. E., and Umbarger, H. E., 1976, Polarity and the regulation of the ilv gene cluster in Escherichia coli strain K-12, Mol. Gen. Genet. 148: 111–124.PubMedCrossRefGoogle Scholar
  190. Smith, O., Meyers, M. M., Vogel, T., Deeley, R. D., and Goldberger, R., 1974, Defective in vitro binding of histidyl-transfer ribonucleic acid to feedback resistant phosphoribosyl transferase of Salmonella typhimurium, Nucleic Acids Res. 1: 881–888.PubMedCrossRefGoogle Scholar
  191. Somers, D. G., Pearson, M. L., and Ingles, C. J., 1975, Regulation of RNA polymerase II activity in a mutant rat myoblast cell line resistant to a amanitin, Nature 253: 372–374.PubMedCrossRefGoogle Scholar
  192. Somerville, R. L., and Stetson, H., 1974, Expression of the tryptophan operon in merodiploids of Escherichia coli. II. Effects of polar mutations in the trpE gene, Mol. Gen. Genet. 131: 247–261.PubMedCrossRefGoogle Scholar
  193. Somerville, R. L., and Yanofsky, C., 1965, Studies on the regulation of tryptophan biosynthesis in Escherichia coli, J. Mol. Bel. 11: 747–759.CrossRefGoogle Scholar
  194. Squires, C. L., Rose, J. K., Yanofsky, C., Yang, H.-L., and Zubay, G., 1973, Tryptophanyl-tRNA and tryptophanyl-tRNA synthetase are not required for in vitro repression of the tryptophan operon, Nature New Biol. 245: 131–133.PubMedGoogle Scholar
  195. Stein, J. L., Reed, K., and Stein, G. S., 1976, Effect of histones and nonhistone chromosomal proteins on the transcription of histone genes from HeLa S3 cell DNA, Biochemistry 15: 3291–3295.PubMedCrossRefGoogle Scholar
  196. Stetson, H., and Somerville, R. L., 1971, Expression of the tryptophan operon in merodiploids of Escherichia coli I. Gene dosage, gene position and marker effects, Mol. Gen. Genet. 111: 342–351.PubMedCrossRefGoogle Scholar
  197. Sykes, R. B., and Matthew, M., 1976, The /3–lactamases of gram-negative bacteria and their role in resistance to ßlactam antibiotics, J. Antimicrob. Chemother. 2: 115–157.PubMedCrossRefGoogle Scholar
  198. Taketo, M., and Ishihama, A., 1976, Biosynthesis of RNA polymerase in Escherichia coli. IV. Accumula- tion of intermediates in mutants defective in the subunit assembly, J. Mol. Biol. 102: 297–310.PubMedCrossRefGoogle Scholar
  199. Taketo, M., Ishihama, A., and Kirschbaum, J. B., 1976, Altered synthesis and stability of RNA polymerase holoenzyme subunits in mutants of Escherichia coli with mutations in the ß or ß’ subunit genes, Mol. Gen. Genet. 147: 139–143.CrossRefGoogle Scholar
  200. Tegtmeyer, P., 1972, Simian virus 40 deoxyribonucleic acid synthesis: The viral replicon, J. Virol. 10: 591–598.PubMedGoogle Scholar
  201. Tegtmeyer, P., 1975, Function of simian virus 40 gene A in transforming infection, J. Virol 15: 613–618.PubMedGoogle Scholar
  202. Tegtmeyer, P., Schwartz, M., Collins, J. K., and Rundell, K., 1975, Regulation of tumor antigen synthesis by simian virus 40 gene A, J. Virol. 16: 168–178.PubMedGoogle Scholar
  203. Thomas, J. O., and Kornberg, R. D., 1975, An octamer of histones in chromatin and free in solution, Proc. Natl. Acad. Sci. U.S.A. 72: 2626–2630.PubMedCrossRefGoogle Scholar
  204. Thompson, J. A., Stein, J. L., Kleinsmith, L. J., and Stein, G. S., 1976, Activation of histone gene transcription by nonhistone chromosomal phosphoproteins, Science 194: 428–431.PubMedCrossRefGoogle Scholar
  205. Tittawella, I. P. B., 1976, Evidence against autorepression of the ßß’ operon in Escherichia coli, Mol. Gen. Genet. 145: 223–226.PubMedCrossRefGoogle Scholar
  206. Tittawella, I. P. B., and Hayward, R. S., 1974, Different effects of rifampicin and streptolydigin on the control of RNA polymerase subunit synthesis in Escherichia coli, Mol. Gen. Genet. 134: 181–186.PubMedCrossRefGoogle Scholar
  207. Tomizawa, J., and Ogawa, T., 1967, Effect of ultraviolet irradiation on bacteriophage lambda immunity, J. Mol. Biol. 23: 247–263.PubMedCrossRefGoogle Scholar
  208. Tyler, B., Deleo, A. B., and Magasanik, B., 1974, Activation of transcription of hut DNA by glutamine synthetase, Proc. Natl. Acad. Sci. U.S.A. 71: 225–229.PubMedCrossRefGoogle Scholar
  209. Urm, E., Yang, H., Zubay, G., Kelker, N., and Maas, W., 1973, In vitro repression of N-a-acetyl-Lornithinase synthesis in Escherichia coli, Mol. Gen. Genet. 121: 1–7.Google Scholar
  210. Vogel, R. H., McLellan, W. L., Hirvonen, A. P., and Vogel, H. J., 1971, The arginine biosynthetic system and its regulation, in: Metabolic Regulation V ( H. J. Vogel, ed.), pp. 463–488, Academic Press, New York.Google Scholar
  211. Watanabe, T., 1971, Infectious drug resistance in bacteria, Curr. Top. Nlicrobiol. Immunol. 56: 43–98.Google Scholar
  212. Weintraub, H., 1973, The assembly of newly replicated DNA into chromatin, Cold Spring Harbor Symp. Quant. Biol. 38: 247–256.CrossRefGoogle Scholar
  213. Weisblum, B., and Demohn, V., 1969, Erythromycin-inducible resistance in Staphylococcus aureus: Survey of antibiotic classes involved, J. Bacteriol. 98: 447–452.PubMedGoogle Scholar
  214. Weisblum, B., Siddhikol, C., Lai, C. J., and Demohn, V., 1971, Erythromycin-inducible resistance in Staphylococcus aureus: Requirements for induction, J. Bacteriol. 106: 835–847.PubMedGoogle Scholar
  215. Whitlock, J. P., and Simpson, R. T., 1976, Removal of histone H1 exposes a fifty base pair DNA segment between nucleosomes, Biochemistry 15: 3307–3314.PubMedCrossRefGoogle Scholar
  216. Wilcox, G., Clemetson, K. J., Santi, D. V., and Englesberg, E., 1971, Purification of the araC protein, Proc. Natl. Acad. Sci. U.S.A. 68: 2145–2148.PubMedCrossRefGoogle Scholar
  217. Wilcox, G., Boulter, J., and Lee, N., 1974a, Direction of transcription of the regulatory gene araC in Escherichia coli B/r, Proc. Natl. Acad. Sci. U.S.A. 71: 3635–3639.PubMedCrossRefGoogle Scholar
  218. Wilcox, G., Clemetson, K. J., Cleary, P., and Englesberg, E., 1974b, Interaction of the regulatory gene product with the operator site in the L-arabinose operon of Escherichia coli, J. Mol. Biol. 85: 589–602.PubMedCrossRefGoogle Scholar
  219. Wilson, T. H., 1962, Intestinal Absorption, Saunders, Philadelphia.Google Scholar
  220. Winshell, E., and Shaw, W. V., 1969, Kinetics of induction and purification of chloramphenicol acetyltransferase from chloramphenicol-resistant Staphylococcus aureus, J. Bacteriol. 98: 1248–1257.PubMedGoogle Scholar
  221. Wohlhueter, R. M., Schutt, H., and Holzer, H., 1973, Regulation of glutamine synthetase in vivo in E. coli, in: The Enzymes of Glutamine Metabolism ( S. Prusiner and E. R. Stadtman, eds.), pp. 45–64, Academic Press, New York.Google Scholar
  222. Wyche, J. H., Ely, B., Cebula, T. A., Snead, M. C., and Hartman, P. E., 1974, Histidyl-transfer ribonucleic acid synthetase in positive control of the histidine operon in Salmonella typhimurium, J. Bacteriol. 117: 708–716.PubMedGoogle Scholar
  223. Yang, H.-L., Zubay, G., and Levy, S. B., 1976, Synthesis of an R plasmid protein associated with tetracycline resistance is negatively regulated, Proc. Natl. Acad. Sci. U.S.A. 73: 1509–1512.PubMedCrossRefGoogle Scholar
  224. Zalkin, H., Yanofsky, C., and Squires, C. L., 1974, Regulation in vitro synthesis of Escherichia coli tryptophan operon messenger ribonucleic acid and enzymes, J. Biol. Chem. 249: 465–475.PubMedGoogle Scholar
  225. Zamenhof, S., and Eichhorn, H. H., 1967, Study of microbial evolution through loss of biosynthetic functions: Establishment of “defective” mutants, Nature 216: 456–458.PubMedCrossRefGoogle Scholar
  226. Zubay, G., Morse, D. E., Schrenk, W. J., and Miller, J. H. M., 1972, Detection and isolation of the repressor protein for the tryptophan operon of Escherichia coli, Proc. Natl. Acad. Sci. U.S.A. 69: 1100–1103.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1979

Authors and Affiliations

  • Michael A. Savageau
    • 1
  1. 1.Department of MicrobiologyThe University of MichiganAnn ArborUSA

Personalised recommendations